Папярэдняя старонка: Іншае

Эйнштейн 


Аўтар: Кузнецов Б. Г.,
Дадана: 30-12-2012,
Крыніца: Москва 1980.



Кузнецов Б. Г. Эйнштейн. Жизнь. Смерть. Бессмертие. 5-е изд., перераб. и доп. - М.: Наука, 35 л. 50 000 экз.

Книга рассказывает о жизни, мировоззрении и творчестве Альберта Эйнштейна (1879-1955), о возникновении и развитии его идей, об их значении в истории науки, философии и культуры. Заключительный раздел книги "Параллели" представляет собой ряд очерков, в которых мировоззрение Эйнштейна сопоставляется с мировоззрением ряда мыслителей (Аристотель, Ньютон Декарт, Спиноза, Бор, Достоевский, Моцарт и др.).

К89

Ответственный редактор доктор физико-математических наук

М. Г. ИДЛИС

(c) Издательство "Наука", 1980г.

СОДЕРЖАНИЕ:

Предисловие 5

ЖИЗНЬ

Ессе homo 10

Отрочество 23

Студенческие годы 30

Берн 40

"Надличное" 51

Математика и реальность 58

Критерии выбора научной теории и основы классической физики 77

Броуновское движение 96

Фотоны 106

Постоянство скорости света 112

Пространство, время, энергия и масса 131

Прага и Цюрих 141

Берлин 162

Общая теория относительности 173

Подтверждение теории относительности 180

Слава 186

Нацистский режим в Германии Принстон 231

Трагедия атомной бомбы 267

СМЕРТЬ

Последние годы 284

Неклассическая наука и проблема смерти и страха смерти 294

Смерть Гулливера 299

БЕССМЕРТИЕ

Бессмертие разума 306

Бесконечность и бессмертие 320

Бессмертие человека 327

Принцип бытия 336

Единая теория поля 344

Необратимость времени 384

ПАРАЛЛЕЛИ

Эйнштейн и Аристотель 396

Эйнштейн и Декарт 413

Эйнштейн и Ньютон 439

Эйнштейн и Фарадей 477

Эйнштейн и Мах 487

Эйнштейн и Бор 516

Эйнштейн и Достоевский 553

Эйнштейн и Моцарт 626

Литература 655

Указатель имен 675

Предисловие

Чем крупнее мыслитель, тем явственней выступают в ею биографии черты эпохи, тем естественней биография переходит в историю.

Биография Эйнштейна - это биография пионера неклассической науки, неклассической не только по своим исходным утверждениям, отличающим ее от классической науки XVII-XIX вв., неклассической по своему стилю, по явному, происходящему на глазах одного поколения изменению фундаментальных принципов, по решительному отказу от неподвижных устоев. Эволюция теории относительности в трудах Эйнштейна (а в ней стержневая линия биографии мыслителя) демонстрирует динамизм этой теории. Ее смысл и содержание все время меняются, причем дело не сводится к новым применениям и иллюстрациям. Так было и в классической науке, которая, конечно, изменялась в своих основах, но зачастую неявно и с большими антрактами, создававшими иллюзию неподвижности и априорности этих основ. Развитие неклассической науки сопровождается практически непрерывным обсуждением и относительно быстрой модификацией ее основных принципов. Смысл теории относительности, смысл неклассической науки, а значит, и основной смысл жизни Эйнштейна раскрываются не только и даже не столько при систематическом изложении теории, сколько в прогнозе и в ретроспекции, когда видно, как изменился смысл фундаментальных философских и физических идей прошлого в свете современной науки и какие новые горизонты она открывает будущему.

Теперь о чертах эпохи в биографии Эйнштейна. Современная эпоха в значительной мере обязана своим беспрецедентным динамизмом динамизму неклассической науки.

5

Характеристика современной эпохи невозможна без динамических констатаций, без констатаций направления, скорости и ускорения происходящих сейчас процессов. Такие констатации требуют прогноза. Озеро можно охарактеризовать, указав очертания и уровень его зеркала; характеристика потока включает не только уровень, по и градиент и дислокацию водоема, в который впадает поток.

Соответственно, исторические черты эпохи, выступающие в биографии Эйнштейна, - это тенденции, реализующиеся за пределами первой половины XX в., когда ученый жил и творил. А в каких же хронологических пределах они реализуются?

Все дело в том, что таких пределов нет. Чем дальше мы заглядываем вперед, тем неопределенней становится эффект того, что сделал Эйнштейн, и дальнейшая реализация того, что воплотилось в его идеях, дальнейшее развитие этих идей. Но при все возрастающей неопределенности прогноза можно быть уверенным, что эффект творчества Эйнштейна и его исходных идей не будет затухать. Напротив, он будет разгораться, воплощаться во все более точных и общих, все более близких к действительности концепциях мира.

Таким образом, чтобы ответить на вопрос, что такое жизнь Эйнштейна, в чем ее смысл, значение, содержание, нужно перейти от жизни в собственном, хронологическом смысле, т.е. от 1879-1955 гг., к последующим годам, уходящим в будущее, т.е. к теме бессмертия Эйнштейна.

Первым вариантом этой книги была биография Эйнштейна, вышедшая впервые в Москве почти двадцать лет назад и не раз издававшаяся во многих странах. Она содержала небольшую заключительную главу с беглыми заметками о будущем, о посмертном воздействии Эйнштейна на эволюцию науки. Теперь изменился самый жанр книги: она посвящена не только жизни и смерти Эйнштейна, но и его бессмертию как основной теме. Сейчас книга - уже не только и даже не столько биография Эйнштейна, сколько попытка ответить на вопрос, что означают для современного человечества жизнь и идеи Эйнштейна и в чем состоит развитие этих идей, что придает им жизнь, динамику, бессмертие.

6

Первая часть книги - "Жизнь", естественно, в наибольшей степени сохранила биографический характер.

Новая структура книги позволила даже сделать биографические главы более биографическими, освободив их от некоторых, сравнительно сложных теоретических вкраплений, которые теперь перешли во вторую и особенно в третью части.

Вторая часть - "Смерть" - посвящена отношению Эйнштейна к смерти и, далее, более общему вопросу о связи между современной, неклассической наукой и проблемой смерти и страха смерти. Эта вторая часть книги - естественный переход от биографии к истории, от периода, когда развитие теории в значительной мере носит отпечаток индивидуального стиля мышления, условий жизни, индивидуальных симпатий и интересов, к другому периоду, когда эволюция теории теряет биографический колорит.

Это переход не только к истории, по и к философии науки - к тому, что можно было бы назвать философией истории науки, что прорывает рамки локального, преходящего, ограниченного и охватывает дальнейшее развитие данной идеи, концепции, теории. Иначе говоря, к бессмертию, к бесконечной эволюции разума, науки, человека, что и является темой третьей части книги.

Четвертая часть - "Параллели" - содержит несколько очерков, опубликованных ранее в "Этюдах об Эйнштейне" и теперь радикально переработанных, а также новые очерки. Современная наука способна сделать то, в чем все религии отказывают богам, - она меняет не только будущее, но и прошлое. В современной ретроспекции идеи античной науки, идеи XVII-XIX вв. и воздействия культурных ценностей, в частности художественных, на науку выглядят по-иному. В свете современной науки выступает на первый план то, что было в тени. Переоценка исторических ценностей - важнейшая компонента культурного эффекта современной науки. Но при сопоставлении современной науки с ценностями прошлого современные представления сами выступают в новом освещении. Они оказываются исторической модификацией сквозных идей, проходящих через всю духовную историю человечества. Сравнение концепций Эйнштейна с взглядами Аристотеля, Декарта и других позволяет по-новому увидеть Эйнштейна.

7

Вероятно, следует предупредить читателя, что четвертая часть книги предъявляет ему несколько повышенные требования. Вообще книга стала теперь (отчасти была и раньше) неоднородной в смысле доступности. Она довольно отчетливо распадается на два концентра. Первый - это вся первая часть, вся вторая и почти вся третья часть - до глав: "Принцип бытия" и "Единая теория поля". Второй, более трудный концентр, требующий некоторой привычки к абстрактным физическим понятиям, - это две указанные главы и четвертая часть книги, кроме, пожалуй, последних двух глав ("Эйнштейн и Достоевский", "Эйнштейн и Моцарт").

Мне остается сердечно поблагодарить тех, кто помог выпустить эту книгу: рецензентов и редакторов, а также многочисленных друзей, в беседах с которыми выкристаллизовались изложенные здесь мысли. Сейчас я вспоминаю людей, которые за годы, прошедшие после первого издания, помогли мне узнать много нового об Эйнштейне и многое по-новому осмыслить. Из них некоторых уже нет. Это Макс Борн, Роберт Оппенгеймер, Леопольд Инфельд. Об их помощи я сохраню на всю жизнь благодарную память. Особенно хочется отметить незабвенного Игоря Евгеньевича Тамма. Многолетнее общение с этим замечательным ученым и человеком позволило живее почувствовать глубокую человечность современной науки, ее эйнштейновских традиций.

Хочется также обратиться с приветом, благодарностью и надеждой на дальнейшую дружескую помощь к секретарю Эйнштейна - Эллен Дюкас и еще ко многим, не названным здесь людям.

8

Жизнь

Ecce Homo

Он человек был в полном смысле слова.
Шекспир. "Гамлет"

Реплика Гамлета выражает идеал человека, свойственный эпохе Возрождения и новому времени. Покойный король был в глазах Гамлета гармоничным олицетворением мысли, воплотившейся в действие. Сам Гамлет остался олицетворением мысли, которая тянется к такому воплощению. XVII столетие усвоило и конкретизировало новый идеал. Для нового времени человек достоин имени человека, если его мысль уже не находит удовлетворения в стройности и тонкости собственных конструкций, как это было в средние века, если она стремится найти гармонию в реальном мире и утвердить ее в жизни. Реплика Гамлета, как и вся трагедия о датском принце, как и все творчество Шекспира, - это программа, которую выполнило или стремилось выполнить новое время. Рационализм XVII в. порвал со схоластической традицией мысли, замкнутой в самой себе, обратился к природе, приобрел естественнонаучный и практический характер. Соответствие между конструкциями разума и действительностью стало основой претензий разума на независимость.

Прервем на минуту только что начатую характеристику свойственного эпохе Возрождения и началу нового времени понятия человека. Реплика Гамлета выражает и более общую концепцию. Именно поэтому приведенной репликой можно начать очерк жизни Эйнштейна.

Жизнь гения не только реализует, но и обобщает и расширяет понятие человека, человеческого бытия, человеческой жизни. Жизнь гения воплощает идеал человека в

10

наиболее общей форме. Нужно только заметить, что обобщение здесь отнюдь не означает перехода от богатства определений и нюансов к бедной абстракции. Напротив, чем в более общей форме выражен идеал человека, тем он ярче и многокрасочней.

Отличие человеческой жизни, человеческого бытия от существования, т.е. от некомплектного, иллюзорного бытия, состоит в автономии личности, в ее индивидуальной, неповторимой ценности и, с другой стороны, в ее многообразной и сложной связи с целым. Это две исключающие одна другую и в то же время неотделимые одна от другой компоненты подлинного бытия. В конце третьей части этой книги будут показаны физические аналогии, позволяющие изложить эту концепцию бытия в сравнительно отчетливой форме.

Теперь вернемся к эволюции представления о человеке и о подлинном человеческом бытии. Выше было сказано об этом представлении в рамках рационализма XVII в. XVIII столетие было временем прямого революционного вмешательства рационалистической мысли в жизнь общества. В XIX в. наука, убедившись в бесконечной сложности мироздания, стала еще более человечной, она уже не была написана на вечных скрижалях, ее непрерывно расширяли и уточняли. В XX в. наука оказалась еще ближе людям. Незыблемые и поэтому питавшие представление об априорности классические законы оказались веточными, на их место встали иные, более точные законы. При всей сложности и непонятности новых представлений человечество почувствовало, что они низводят науку с Олимпа априорного знания на землю и таким образом вновь повторяют подвиг Прометея. На земле в это время готовились великие события, и людям была близка наука, не останавливающаяся ни перед чем в поисках истины и гармонии. Парадоксальность новой картины мира делала ее близкой людям, ведь это были дети века, которому было суждено войти в историю как веку революций.

Уже в XVII в. в развитии научной мысли наблюдает ся на первый взгляд противоречивая особенность. Чем меньше наука ограничивается непосредственными субъективными наблюдениями, чем глубже она проникает в объективные закономерности природы, тем ближе она людям, тем она человечнее. Как ни странно, геоцентрическая объективация непосредственного наблюдения -

11

движения Солнца вокруг Земли - была в начале XVII в. позицией замкнутых групп, а противоречащие непосредственному наблюдению, весьма парадоксальные гелиоцентрические идеи Галилея оживленно и сочувственно обсуждались на площадях итальянских городов.

В XX столетии ученый мог получить высшее признание ("человек в полном смысле слова"), если он был творцом теории, столь же радикально, а может быть еще радикальнее, рвавшей с догматом и догматической "очевидностью". Антидогматическая парадоксальность науки стала еще более важным, чем раньше, условием ее близости людям. В XX в. все воздействия времени и людей на мышление ученого толкали его к разрыву с "очевидностью". Речь теперь шла - в этом характерная черта столетия - о самых общих представлениях. Наука уже не отдавала практике лишь свои частные выводы. Непосредственным источником производственно-технических сдвигов и больших сдвигов в стиле мышления и во взглядах людей стали основные идеи науки, представления о пространстве и времени, о Вселенной и ее эволюции, о мельчайших элементах мироздания - общая картина мира.

Чем выше и дальше уходит ученый от частных вопросов к этой общей картине Вселенной, тем ближе его творчество к самым острым проблемам, интересующим все человечество.

Оказалось при этом, что наиболее прямой дорогой к этим проблемам шли наиболее парадоксальные и радикально отказывающиеся от старого общие концепции мира. Теоретической основой самых глубоких сдвигов в жизни людей стали концепции, ушедшие очень далеко от сферы непосредственного наблюдения, относящиеся к скоростям, близким к скорости света, охватившие области в миллиарды световых лет и области порядка триллионных долей сантиметра, нашедшие здесь самые парадоксальные, с точки зрения классической науки, соотношения.

Сейчас разрыв с "очевидностью" должен быть еще более радикальным, чем в первой половине века. Нильс Бор при обсуждении выдвинутой Гейзенбергом единой теории элементарных частиц сказал: "Нет никакого сомнения, что перед нами безумная теория. Вопрос состоит в том, достаточно ли она безумна, чтобы быть правильной".

Этот парадокс точно характеризует современную ситуацию в науке.

12

Наука - не только физика, наука в целом - должна сейчас выдвигать "безумные", т.е. радикально отказывающиеся от традиционных взглядов и потому весьма парадоксальные идеи. На очереди отказ от классических основ естествознания, еще более радикальный, чем тот, который в первой четверти столетия положил начало современному учению о пространстве, времени, веществе, его структуре и движении.

Наука черпает в своем прошлом образцы радикальных поворотов к парадоксальным, "безумным" концепциям. Эти концепции обычно довольно быстро проходят путь от "безумия" к репутации Колумбова яйца, они становятся привычными, естественными, "единственно возможными", чуть ли не априорно присущими дознанию и во всяком случае "очевидными". Когда дорога к вершинам найдена, она выглядит естественной, ее направление кажется само собой разумеющимся, и трудно представить, каким парадоксальным был выбор этого направления, какое "безумство храбрых" понадобилось, чтобы свернуть на эту дорогу со старой, тогда казавшейся единственно возможной.

Когда теория совершает свое нисхождение от парадоксальности к "очевидности", нимб "безумия" переходит к ее творцу. В биографии ученого запечатлен не результат его научного подвига, а, если можно так выразиться, градиент научного прогресса, связанного с этим подвигом, скорость возрастания уровня знаний, производная от уровня знаний по времени, взлет кривой познания вверх. История науки вообще отличается от самой науки тем, что в ней фигурируют но сами знания, не их уровень, а производные по времени, переходы от незнания к знанию, переходы от менее точных знаний к более точным. Моменты особенно быстрого возрастания достоверных сведений о природе - узловые точки исторического процесса развития науки. В историческом аспекте результаты научного открытия сопоставляются с предшествующим этому открытию состоянием знаний, и их различие не уменьшается, какими бы привычными ни становились указанные результаты. Если воспользоваться аналогией с понятиями, которые нам еще встретятся в этой книге, то можно сказать: оценка прироста знаний, т.е. разности между двумя последовательными уровнями науки, не зависит от того, с каких позиций мы оцениваем эти уровни, подобно тому как приращение координат не зависит от

13

выбора начальной точки отсчета. Прирост знаний в некоторый момент всегда остается таким же впечатляющим, как бы далеко мы ни ушли от уровня знаний, характерного для этого момента. Переход от плоской Земли к сферической не теряет своей значительности, градиент этого перехода не умаляется, хотя мы ушли очень далеко от уровня греческой науки. Каждое быстрое и радикальное преобразование научной картины мира - узловой момент истории науки - никогда не теряет своей остроты, различие между двумя последовательными ступенями науки не сглаживается, впечатление резкости, парадоксальности, "безумия" перехода не исчезает.

В биографии ученого такой узловой момент виден через призму жизни, творческого пути и мировоззрения ученого, в связи с особенностями его научного темперамента, с его внутренним миром и внешними событиями. Именно темп научного прогресса, именно его градиент, производная по времени, соответствуют тому, что можно назвать масштабом гениальности.

Гений не тот, кто много знает, ибо это относительная характеристика. Гений много прибавляет к тому, что знали до него. Именно такое прибавление связано с особенностями интеллекта и не только с ними, но и с эмоциональным миром мыслителя.

Гейне говорил, что карлик, ставший на плечи великана, видит дальше великана, "но нет в нем биения гигантского сердца".

Эпигоны гения знают, как правило, больше него, но они не прибавили ничего или почти ничего к тому, что люди знали раньше, их деятельность характеризуется, может быть, большим объемом познанною (относительная оценка!), но нулевой или близкой к нулю производной по времени. Не только в мыслях, но и в чувствах и склонностях эпигонов отсутствует "дух Фауста"

Чтобы не только услышать в биографии Эйнштейна "биение гигантского сердца", но и понять его связь с научным подвигом мыслителя, нужно иметь в виду, что в науке не было такого "безумного", такого парадоксального и резкого перехода к новой картине мира, как переход от ньютоновых представлений к идеям Эйнштейна. Переход был чрезвычайно радикальным, несмотря на то что Эйнштейн продолжил, обобщил и завершил дело, начатое Ньютоном.

14

В течение двух столетий систему Ньютона считали окончательным ответом на коренные вопросы науки, окончательной, раз навсегда данной картиной мира. Такая оценка нашла выражение в известном стихотворении Попа:

Природа и ее законы были покрыты тьмой,

Бог сказал: "Да будет Ньютон!", и все осветилось.

После появления теории относительности Эйнштейна и отказа от исходных идей ньютоновой механики было написано продолжение этого двустишия:

...Но не надолго. Дьявол сказал: "Да будет Эйнштейн!",

В все вновь погрузилось во тьму.

Эта шутка отражала довольно распространенную мысль. Многим казалось, что отказ от устоев ньютоновой механики - это отказ от научного познания объективного мира. Догматическая мысль отождествляет данную ступень в развитии науки с наукой в целом, и переход па новую ступень кажется ей крушением науки. Догматическая мысль может тянуть науку с новой ступени на старую или же отказать науке в объективной достоверности ее результатов. Чего догматическая мысль не может - это увидеть суть науки в последовательном, бесконечном переходе ко все более точному описанию реального мира.

Теория относительности преемственно связана с проходящим через всю историю науки последовательным отказом от антропоцентризма, от представления о человеке как о центре Вселенной, от абсолютизирования картины мира, стоящей перед земным наблюдателем.

В глубокой древности антропоцентризм выражался в идее абсолютного верха и абсолютного низа, идее, противостоявшей учению о сферической Земле. Тогда полагали, будто антиподы, обитающие на противоположной стороне Земли, должны были бы упасть "вниз". В древней Греции вместе с образом шарообразной Земли появилась идея относительности "верха" и "низа", равноценности всех направлений в пространстве, изотропности пространства. Но при этом возникло представление о шарообразной Земле как о центре Вселенной. С этой точки зрения движение относительно Земли - это абсолютное движение; фраза "тело движется относительно Земли" и фраза "Земля движется относительно тела" описывают различные процессы, первая фраза абсолютно правильная, вторая - абсолютно ложная...

15

Коперник разрушил геоцентрическую систему. Новый центр мироздания - Солнце - не долго занимал это место. Его упразднили, и во Вселенной Джордано Бруно уже не было никакого центра, никакого неподвижного ориентира.

Но понятие неотнесенного к другим телам абсолютного движения данного тела сохранилось. Вплоть до конца XIX в. полагали, будто оптические процессы в движущемся теле происходят по-иному, чем в неподвижном, и это различие придает смысл слову "движение" без ссылки на другое тело, относительно которого движется данное тело. Мировое пространство считали заполненным абсолютно неподвижным эфиром и думали, что в движущемся теле ощущается "эфирный ветер", подобный ветру, который овевает бегущего человека.

Этот взгляд был отброшен Эйнштейном в 1905 г. в статье "К электродинамике движущихся тел", помещенной в семнадцатом томе журнала "Annalen der Physik". В указанной статье Эйнштейн исходит из постоянства скорости света во всех телах, движущихся одно по отношению к другому без ускорения.

Вскоре теория относительности была изложена в особенно отчетливой форме с помощью четырехмерной геометрии. В окружающем нас обычном трехмерном пространстве положение каждой точки определяется тремя числами. Если присоединить к ним четвертое число - время, то мы получим геометрическое представление события - пребывания материальной частицы в данной точке в данный момент. С помощью четырехмерной геометрии и представления о четырехмерном пространстве-времени были изложены законы, управляющие указанными событиями, т.е. пребыванием материальных частиц в различных точках в различные моменты (иными словами, законы движения частиц и состоящих из них тел).

Теория относительности, выдвинутая Эйнштейном в 1905 г., утверждает, что внутренние процессы протекают в телах единообразно, независимо от прямолинейного и равномерного движения этих тел. Внутренние эффекты движения отсутствуют в случае движения по инерции.

16

Поэтому теория Эйнштейна, о которой шла до сих пор речь, называется специальной теорией относительности. Впоследствии, в 1916 г., Эйнштейн распространил принцип относительности и на ускоренные движения. Еще позже Эйнштейн в течение многих лет разрабатывал единую теорию поля, т.е. теорию, которая в качестве частных случаев содержала бы законы тяготения и законы электромагнитного поля.

Почему эти весьма абстрактные проблемы вызвали напряженный интерес в самых широких кругах? Почему указанный интерес распространился на творца теории относительности в большей степени, чем при появлении любой другой научной теории? Почему человечество увидело в Эйнштейне живое олицетворение науки XX столетия с ее небывалыми созидательными возможностями и небывалыми опасностями?

Смысл и основное содержание жизни Эйнштейна в некоторой мере раскрыты им не только в научном, публицистическом и эпистолярном наследстве, но и в специальных автобиографических набросках. К ним принадлежит очерк, написанный в 1955 г., за месяц до смерти [1], а также более обширная статья "Автобиографическое" ("Аutobiographisches") [2]. Статья эта меньше всего похожа на обычную автобиографию. "Вот я здесь сижу и пишу на 68 году жизни что-то вроде собственного некролога", - начинает Эйнштейн и после этого рассказывает, как у него появилась всепоглощающая тяга к познанию рациональных законов мироздания. Потом он излагает свое гносеологическое кредо и вновь возвращается к "некрологу", к генезису математических интересов. Основная часть статьи посвящена оценке наиболее крупных физических идей XVII-XIX вв.- ньютоновой механики, термодинамики, электродинамики и затем физических идей, появившихся в нашем столетии. После итоговой оценки механики Ньютона Эйнштейн говорит:

17

""И это некролог?" - может спросить удивленный читатель. По сути дела - да, хотелось бы мне ответить. Потому что главное в жизни человека моего склада заключается в том, что он думает и как он думает, а не в том, что он делает или испытывает. Значит, в некрологе можно в основном ограничиться сообщением тех мыслей, которые играли значительную роль в моих стремлениях".

1 См.: Helle Zeit - Dunkle Zeit. In Memoriam Albert Einstein. Hrsg. Carl Seelig. Zurich, 1956, p. 9-17. Далее обозначается: Helle Zeit, с указанием страницы.

2 Albert Einstein. Philosopher-Scientist. Ed. by Paul A. Schilpp. Evanston, 1949. См. перевод: Эйнштейн А. Собрание научных трудов, т. 4, М., 1967, с. 259-293. Далее обозначается: Эйнштейн, с указанием тома и страницы.

Мы будем много раз возвращаться к автобиографии Эйнштейна, рассказывая о его мировоззрении и истоках великих открытий.

Эйнштейн не случайно назвал свою автобиографию некрологом. В данном случае "некролог" означает итоговую оценку творчества и мировоззрения. Эйнштейн выделил из биографии историю: выделил из жизни, калейдоскопически пестрой, полной мимолетных и мелких событий, то, что делает эту жизнь элементом духовной истории человечества. Никогда история науки не совпадала в такой степени с творческим путем ученого. В этом и состоит гениальность мыслителя. Как уже говорилось, гений - это человек, чья жизнь в наибольшей степени совпадает с жизнью человечества. Интересы гениального ученого - это имманентные потребности развивающейся науки, стремления гения - это имманентные пути науки, успехи гения - это переходы науки с одной ступени на другую, высшую. Такое совпадение было в колоссальной (среди физиков, быть может, беспрецедентной!) степени свойственно Эйнштейну.

Именно поэтому Эйнштейн никогда не думал о своей гениальности и отвечал характерным, необычайно искренним, совершенно детским смехом на каждую попытку присоединить к его имени этот эпитет. Размышления о собственной личности входят в тот комплекс "только личного", от которого гений освобождается, становясь выразителем "надличного" процесса.

Противопоставление "только личного" и "надличного" в автобиографии Эйнштейна (эти понятия появляются в ней с первых страниц) определяет структуру "некролога"; в частности, подчеркнут ретроспективный характер изложения интеллектуальной жизни Эйнштейна, преимущественное внимание к ее большим, подлинно историческим вехам. Мы будем иметь возможность остановиться подробнее на этой крайне важной черте автобиографии. Здесь отметим только, что и биография Эйнштейна долж-

18

на в некоторой мере следовать структуре автобиографии, она должна часто отступать от хронологической последовательности в изложении духовного развития Эйнштейна, давать итоговые характеристики, прослеживать совпадение жизни ученого с исторической эволюцией науки. Тогда она будет биографией гения.

Биография не будет биографией Эйнштейна, если она не станет исходить из итоговых характеристик исторического процесса, воплотившегося в творческом пути создателя теории относительности. Но она не будет биографией Эйнштейна, если сведется к итоговым характеристикам и историческим проблемам. Трем поколениям современников Эйнштейна дороги самые мельчайшие подробности его жизни, его наружность, его привычки, его манера говорить. В памяти людей запечатлелось не только ощущение (чаще всего интуитивное) колоссальной мощи интеллекта, но и человечность, мягкость, обаяние.

При всем абстрактном характере своих идей, при всем напряженном, определившем смысл жизни стремлении отойти от повседневного Эйнштейн не остался в памяти человечества лишенным конкретных черт пророком, принесшим людям скрижали завета с вершин абстрактной мысли. В конечном счете это связано с мировоззрением и со смыслом научного подвига. Эйнштейн знал - это была одна из его исходных идей, - что абстрактная мысль, безупречная по своей логической строгости, не может сама по себе найти действительные закономерности Вселенной. В конце концов Эйнштейн нашел новые скрижали завета, новые мировые уравнения, исходя из эксперимента, разбившего старые скрижали.

Создатели догматических доктрин становятся небожителями уже в глазах своих непосредственных учеников. Эйнштейну эта судьба пе грозит даже в самом отдаленном будущем. Неаприорный и недогматический характер теории относительности гармонирует с образом ее творца. Эйнштейн с отрочества стремился найти рациональную схему мироздания, но не допускал мысли об априорной рамке, будто бы вносящей ratio в хаотический поток бытия. Напротив, ratio, упорядоченность свойственны миру как "внеличному", независимому от сознания объекту.

19

Соответственно и большие идеи, охватывающие все мироздание, вырастают из непрерывного потока эмпирического знания, они ищут в этом потоке подтверждение, изменяются, обобщаются, конкретизируются. При таком понимании генезиса научных идей они никогда не выглядят пророчествами, а их автор пророком - ни в своих собственных глазах, ни в глазах человечества.

Автобиография Эйнштейна заканчивается словами: "Этот рассказ достиг своей цели, если он показал читателю, как связаны между собой усилия целой жизни и почему они привели к ожиданиям определенного рода" [3].

Автобиография последовательно рассказывает о наиболее крупных направлениях деятельности Эйнштейна, и приведенная фраза может означать констатацию связи между этими направлениями. Творческий путь Эйнштейна производит впечатление удивительной логической стройности и похож в этом отношении на упорядоченный, рациональный и единый мир, который Эйнштейн искал в беспорядочной смене отдельных наблюдений и экспериментов. Разумеется, это не только аналогия. Каждый великий мыслитель в конце концов подчинял свою жизнь единому интеллектуальному подвигу. Но Эйнштейн выделяется из ряда исследователей природы гармонией научных интересов и направлений мысли. Может быть, лучше сказать не "гармонией", а "мелодией": направления мысли Эйнштейна, следующие друг за другом во времени, образуют настолько закономерный ряд, что составителю биографии Эйнштейна почти не приходится тратить усилия на поиски внутренней логики событий творческой жизни. И не только творческой. Личная жизнь Эйнштейна была в очень большой степени подчинена логике его научного подвига. Эйнштейн в своей автобиографии хотел отойти от всего случайного и личного, чтобы представить "надличную" эволюцию мысли. Но он это делал не только post factum, в автобиографии, но и в самой жизни. Когда читаешь автобиографию Эйнштейна, кажется, что это музыкальное произведение, в котором каждая нота однозначно определена общей темой.

В автобиографии Эйнштейна есть формулы, которые берут в одни скобки весь творческий путь Эйнштейна и вместе с тем исторический путь науки в целом. Мне хотелось воспользоваться этими формулами и назвать книгу об Эйнштейне "Бегство от чуда"; так Эйнштейн называл

20

преодоление чувства удивления перед парадоксальным фактом, включение этого парадоксального факта в рациональную схему мироздания. Мне хотелось также назвать эту книгу "Бегство от очевидности". Эйнштейн рассматривал "очевидное" как нечто соответствующее привычным представлениям и видел суть науки в создании новых концепций, противоречащих "очевидным" логическим схемам и "очевидным" результатам наблюдений, но отвечающих более точному эксперименту и более точной, строгой и стройной логической схеме.

И, наконец, мне хотелось назвать книгу об Эйнштейне "Бегство от повседневности". Эйнштейн рассказывает в своей автобиографии, как в его сознании все обыденное, преходящее, личное уступало место всеохватывающему стремлению к познанию реального мира в его единстве.

Все эти формулы позволяют ощутить потрясающую монолитность фигуры Эйнштейна, гармонию мысли и чувства, пронизывающую его биографию. Образ Эйнштейна, погруженного в расчеты, которые должны ответить на вопрос, конечна или бесконечна Вселенная, и образ человека, переписывающего от руки свою первую статью о теории относительности, чтобы проданный автограф дал средства для некоего общественного начинания (в сороковые годы он был куплен библиотекой Конгресса за многомиллионную сумму), - эти образы кажутся слившимися; нам представляется, что в каждом случае только так и мог поступить Эйнштейн. Мы уверены, что только человек, никогда не думавший о себе, мог с такой отрешенной от всего личного последовательностью разрабатывать теорию, рвавшую с очевидностью наблюдения, с очевидностью логики, с тысячелетней традицией, теорию, "безумную" в самом высоком и благородном смысле этого слова. В этом смысле душевная чистота Эйнштейна кажется нам неотделимой от титанической силы мышления.

В "Первых воспоминаниях" Льва Толстого помещен рассказ о "зеленой палочке", на которой написан секрет общечеловеческого счастья, и о других тайнах, которые могут быть открыты, если в течение часа не думать о неких безразличных вещах. Чтобы обрести "зеленую палочку" в науке, нужна такая сила не сворачивающей в сторону мысли, которая эквивалентна абсолютному отсутствию посторонних помыслов в сознании, очищенном от всего преходящего и личного.

21

Если построить биографию Эйнштейна как рассказ о едином процессе поисков, все более общих и точных закономерностей мироздания, то такой рассказ может быть разделен на следующие части.

Отрочество было периодом первых порывов к "надличному", поисков смысла жизни, приведших к естественнонаучным интересам, к стремлению узнать закономерности объективного мира. Студенческие годы были годами выработки мировоззрения и приобретения математических и физических знаний, синтез которых привел к созданию специальной теории относительности. Создание этой теории завершило первую часть творческого пути Эйнштейна.

Вторая часть - попытки обобщения теории относительности на ускоренные движения. Они завершаются появлением общей теории относительности, новой космологии, основанной на общей теории относительности, и ее подтверждением при наблюдении солнечного затмения, подтверждением, которое принесло теории широкое признание.

Третий период проходит под знаком (большей частью неявным) приближения атомной эры. В двадцатые годы создается теория микромира - квантовая механика. Эйнштейн занимает критическую позицию по отношению к некоторым идеям этой теории. Сам он разрабатывает, вернее, стремится разработать, единую теорию поля.

В большинстве случаев оценки творчества Эйнштейна и, в частности, биографические очерки исходят из признания бесплодности этого круга идей Эйнштейна. Однако сейчас в физике наметились такие тенденции, которые позволяют пересмотреть старые оценки и по-иному представить объективный смысл беспримерного по напряженности интеллектуального труда, заполнившего половину жизни великого мыслителя. Анализ указанных тенденций и некоторый прогноз в отношении дальнейшего развития учения об элементарных частицах служат поэтому необходимой предпосылкой итоговых оценок, а следовательно, и освещения творческого пути Эйнштейна.

Отрочество

Его называли пай-мальчиком за болезненную любовь к правде и справедливости. То, что тогда окружающим казалось болезненным, представляется сейчас выражением исконного, неистребимого инстинкта. Кто знает Эйнштейна как человека и ученого, тому ясно, что эта детская болезнь была лишь предвестницей его несокрушимого морального здоровья.

А. Мошковский

Среда, в которой Эйнштейн получил первые жизненные впечатления, позволила ему рано ощутить две диаметрально противоположные исторические традиции. Он их ощущал и позже - всю жизнь. Одна традиция - рационалистическая. В Швабии, где родился Эйнштейн, она имела арочные корни, которые отчасти шли из Эльзаса и далее из Франции. Другая традиция - слепая вера в непогрешимость полицейского государства, так рельефно показанная в "Верноподданном" Генриха Манна. Ее представителями были прусские офицеры и чиновники, насаждавшие в южной Германии вновь созданную имперскую государственность. Эйнштейн стал выразителем первой, рационалистической тенденции. Его жизненным идеалом было познание мира в его единстве и рациональной постижимости. Правда, парадоксальный мир Эйнштейна далек от застывшей картины мира, из которой исходили представители классического рационализма XVIII в. По все, что сопутствовало унаследованному от XVIII в. рациопалистическому мировоззрению, - идея суверенности разума, ирония Вольтера и его терпимость, провозглашенная Руссо защита естественных стремлений человека от тирании, - все это в известной мере сохранилось в правах и взглядах окружавшей Эйнштейна среды и навеянное ранними впечатлениями оставалось живым в его душе. Сохранилась и враждебная традиция. Она при жизни Эйнштейна приняла размеры и формы, угрожавшие самому существованию цивилизации.

23

Альберт Эйнштейн родился 14 марта 1879 г. в Ульме - у подножия Швабских Альп, на левом берегу Дуная. Этот старинный город, история которого восходит к IX в., когда-то был наиболее передовым и процветающим в Швабском союзе городов. В XVI в. Ульм, ставший к тому времени большой крепостью, участвовал в борьбе протестантских князей против католической церкви и императорской власти. Во времена наполеоновских войн Ульм стяжал известность благодаря происшедшему здесь разгрому австрийской армии Макка.

В 1809 г. по Венскому мирному договору, закрепившему поражение Австрии, Ульм вошел в состав Вюртембергского королевства. В 1842 г. разрушенные крепостные сооружения были восстановлены и перестроены прусскими инженерами. Вокруг Ульма возведено двенадцать фортов и крепостных башен, охватывающих оба берега Дуная.

В семидесятые годы Ульм сохранил черты средневекового швабского города: узкие, кривые улочки, дома с островерхими фронтонами, огромный, господствующий над городом готический собор XV в. со сташестидесятиметровой башней. С нее открывается панорама равнин и холмов до хребтов Тироля и Швейцарии, перспектива Швабских Альп, далеко видны поля Баварии и Вюртемберга, а в непосредственной близости - мощные очертания цитадели Вильгельмсбург и окружающих ее фортов, городская ратуша, рыночная площадь, литейные заводики и ткацкие фабрики. Тридцать тысяч жителей - торговцы сукном и кожами, поденщики, ремесленники, литейщики, ткачи, каменщики, столяры, мастера, изготовляющие знаменитые ульмские курительные трубки, мебельщики, пивовары. В большинстве коренные швабы - на две трети католики, на одну треть лютеране, несколько сот евреев, чей жизненный модус мало чем отличается от общего.

Всюду слышен мелодичный швабский диалект, следы которого надолго сохранились в речи Эйнштейна и который на всю жизнь сохранила Эльза, жена Эйнштейна. В ее устах Альберт всегда был "Albertl", страна (Land) - Landl, город (Stadt) - Stadtl [1]. На фоне этого мягкого эмоционального диалекта звучала отрывистая и резкая речь прусских офицеров и чиновников, постепенно навод-

24

нявших швабские земли. Этот диссонанс выражал и символизировал более глубокие различия указанных выше идейных и культурных традиций. Мелкобуржуазным кругам Вюртемберга была свойственна известная широта взглядов, религиозная и национальная терпимость - черты, противоположные национализму, ограниченности и чванливой нетерпимости, объединенных общим наименованием "пруссачество".

1 Frank P. Einstein, his life and times. New York, 1947, p. 4. Далее обозначается: Frank, с указанием страницы.

В среде, к которой принадлежала семья Эйнштейна, существовал культ Гейне, Лессинга и Шиллера. Их книги стояли на полках вместе с Библией в еврейских семьях и Евангелием в христианских. Особенно популярным был Шиллер, в произведениях которого звучала родная швабская лексика.

Семья Эйнштейна переселилась в Ульм из Бухау, другого вюртембергского городка. Отец его, Герман Эйнштейн, окончив штутгартскую гимназию, хотел поступить в университет: у него были математические способности и интересы. Но вместо университета пришлось заняться торговлей. В 1878 г. Герман Эйнштейн женился на дочери богатого штутгартского хлеботорговца Полине Кох. Они поселились в Бухау, а в 1877 г. переехали в Ульм, где десятью годами ранее обосновался дед Эйнштейна и было немало родных. Герман Эйнштейн открыл в Ульме электротехнический магазин. В Эхингене, в двадцати пяти километрах от Ульма, жил двоюродный брат Германа Эйнштейна Рудольф. У него была дочь Эльза - в будущем жена Альберта. По материнской линии они находились в еще более близком родстве: мать Эльзы была сестрой Полины Кох.

В 1880 г. родители Альберта переселились в Мюнхен. Герман и его брат Якоб открыли здесь электротехническую мастерскую. Когда Альберту было пять лет, они переселились в Зендлинг - предместье Мюнхена, построили дом и небольшую фабрику, где изготовлялись динамо-машины, дуговые фонари и измерительные приборы. На постройку ушли остатки приданого матери Эйнштейна.

В Мюнхене в 1881 г. родилась сестра Альберта Майя. Почти ровесники, они были потом очень дружны. Сад, окружавший дом, был местом их игр.

Герман Эйнштейн привил своей семье любовь к природе. Традицией стали регулярные прогулки по живописным окрестностям города. В них принимали участие многочисленные родственники, иногда Рудольф Эйнштейн, приезжавший из Эхингена с маленькой Эльзой.

25

Мать Альберта играла на пианино и пела. Ее любимым композитором был Бетховен, и с наибольшим увлечением она исполняла его сонаты. Вся семья любила музыку и классическую немецкую литературу.

Якоб Эйнштейн, очень образованный инженер, развивавший у Альберта склонности к математике, жил в семье своего брата Германа Эйнштейна. Братья вместе руководили электротехнической фабрикой. Герману принадлежало коммерческое, Якобу - техническое руководство. Герман Эйнштейн не был удачливым коммерсантом, и средства семьи были крайне ограниченны.

Альберт рос тихим, молчаливым ребенком. Он чуждался товарищей и не участвовал в шумных играх. Ему претила любимая игра сверстников в солдаты. По всей стране гремела музыка военных оркестров. Дефилировали войска, сопровождаемые толпой восторженных мальчишек, а на тротуарах стояли обыватели, с гордостью наблюдая этот марш молодой империи, довольные новым поприщем, широко открывшимся для карьеры их отпрысков. А бедный маленький Альберт, державшийся за руку отца, плакал и просился домой. Его нервировал и пугал шум.

Альберт подрос, пора было отдавать его в школу. Начальное образование в Германии находилось в ведении церкви, и школы строились по принципу вероисповедания. Еврейская школа помещалась далеко от дома, да и обучение в ней было не по средствам. Мальчика отдали в расположенную поблизости католическую школу. Здесь товарищи по школе обратили внимание на характерную черту Альберта - болезненную любовь к справедливости. Мошковский, записывавший в двадцатые годы беседы с Эйнштейном, говорит об этой появившейся уже в детстве черте своего великого собеседника в строках, помещенных в эпиграфе [2]. По-видимому, здесь же, в начальной школе, Эйнштейн впервые столкнулся с антисемитизмом. "Еврейские дети, - пишет Мошковский со слов Эйнштейна, - были в школе в меньшинстве, и маленький Альберт почувствовал здесь на себе первые брызги антисемитской

2 Мошковский А. Альберт Эйнштейн. Беседы с Эйнштейном о теории относительности и общей системе мира. М., 1922, с. 191- 192. Далее обозначается: Мошковский, с указанием страницы.

26

волны, которая из внешнего мира грозила перекинуться в школу. Впервые почувствовал он, как что-то враждебное ворвалось диссонансом в простой и гармоничный мир его души" [3].

Быть может, этот диссонанс не был первым. Он, скорее всего неосознанно, ассоциировался со звуками прусских военных труб на фоне классической музыки, с командными окриками на фоне мягкого и эмоционального диалекта южной Германии. Разумеется, только через много лет Эйнштейн смог увидеть общность различных проявлений темной, иррациональной силы, направленной против разума и гармонии, к которым с детства тянулась его душа. Но уже теперь брызги антисемитизма ранили Эйнштейна не потому, что он был их жертвой, а потому, что они противоречили уже поселившимся в его сознании идеалам разума и справедливости. Во всяком случае, они не вызвали у Эйнштейна (ни в то время, ни позже) чувства национальной обособленности; напротив, они вкладывали в его душу зародыши интернациональной солидарности людей, преданных этим идеалам.

Десяти лет Эйнштейн поступил в гимназию. Здесь обстановка плохо вязалась со склонностями и характером подростка. Классическое образование выродилось в зубрежку латинской и греческой грамматик, а история - в скучную хронологию. Преподаватели подражали офицерам, а учащиеся выглядели нижними чинами. Вспоминая об этом времени, Эйнштейн говорил: "Учителя в начальной школе казались мне сержантами, а в гимназии - лейтенантами". Этот общий фон не исключал светлых пятен. Был в гимназии учитель по фамилии Руэс, пытавшийся открыть ученикам сущность античной цивилизации, ее влияние на классическую и современную немецкую культуру, преемственность культурной жизни эпох и поколений. Навсегда запомнилось Эйнштейну наслаждение, которое он испытывал на уроках Руэса во время чтения "Германа и Доротеи", этого шедевра романтического сентиментализма. Эйнштейн был увлечен своим учителем, искал его бесед, с радостью подвергался наказанию - оставался без обеда в дни дежурства Руэса. Впоследствии, став уже профессором в Цюрихе, Эйнштейн, проезжая

27

через Мюнхен, решил навестить Руэса. Старому учителю ничего не сказала фамилия бедно одетого молодого человека. Он вообразил, что тот будет просить помощи, и принял его очень холодно. Эйнштейн поспешил ретироваться.

Мальчик переходил из класса в класс. Сосредоточенный и тихий, он без блеска справлялся со школьной программой. Точность и глубина его ответов ускользали от педагогов, с трудом терпевших медлительность речи Эйнштейна.

Между тем в мозгу этого тихого мальчика возникали интеллектуальные порывы, он стремился увидеть вокруг себя, в мире и обществе, гармонию, которая была бы созвучна его внутреннему миру. Первоначальная религиозность была быстро разрушена знакомством с устройством Вселенной. Школьные учебники не могли раскрыть гармонию мироздания. Это сделали популярные книги. Их рекомендовал Альберту студент-медик из Польши Макс Талмей, посещавший семью Эйнштейна. В этой семье соблюдалась традиция каждую пятницу приглашать к ужину бедного студента из эмигрантов. По совету Талмея Альберт прочел составленные Бернштейном "Популярные книги по естествознанию". Здесь были собраны сведения из зоологии, ботаники, астрономии, географии и, что особенно существенно, все излагалось под знаком универсальной причинной зависимости явлений природы. Затем Альберт с увлечением принялся за книгу Бюхнера "Сила и материя". В конце столетия эта книга еще имела хождение среди немецкой молодежи, хотя и не такое, как среди русской молодежи шестидесятых годов. При всей своей ограниченности, при всем игнорировании бесконечной сложности мира книга Бюхнера была для многих импульсом для отказа от религии. На Эйнштейна она повлияла в очень большой степени. Школьное и гимназическое образование придерживалось библейского толкования происхождения мира и жизни. В книге Бюхнера все современные знания объединялись отрицанием какого бы то ни было религиозного начала и утверждением материальности мира.

В начальной школе Эйнштейн получил представление о католической религии. В гимназии он изучал иудейский религиозный закон, преподавание которого предусматривалось для еврейской группы учащихся. Эйнштейна увлекала историческая и художественная ценность Ветхо-

28

го завета, но естественнонаучные знания уже сделали свае дело: разброд верований и представлений сменялся постепенно антипатией к религии. У Эйнштейна сложилось намерение выйти из еврейской религиозной общины и отказаться от какого бы то ни было вероисповедания.

Интерес к математике появился у Эйнштейна рано. Его дядя Якоб говорил мальчику: "Алгебра - это веселая наука. Когда мы не можем обнаружить животное, за которым охотимся, мы временно называем его икс и продолжаем охоту, пока не засунем его в сумку". И Альберт принялся за охоту. Он уходил от общепринятых методов и искал новые способы решения простых задач.

Ему было около двенадцати лет. В предстоящем учебном году начинались новые предметы - алгебра и геометрия. С алгеброй он уже был знаком, с геометрией еще не сталкивался. Эйнштейн приобрел учебник геометрии и, как делают все школьники, принялся его листать. Первая же страница захватила его, и он не мог оторваться от книги.

Шести лет его начали учить играть на скрипке. Здесь ему тоже не повезло. Преподаватели музыки не смогли воодушевить ребенка. В течение семи лет Альберт добросовестно тянул скучную лямку. Но вот он принялся за сонаты Моцарта и ощутил их грацию и эмоциональность. Ему хотелось, чтобы все это вылилось из-под его смычка, но не хватало умения. Он принялся оттачивать свою технику, и наконец Моцарт зазвучал. Музыка стала наслаждением. С четырнадцати лет он уже участвовал в домашних концертах. Моцарт в музыке сыграл для него ту же роль, что геометрия Евклида в науке.

Студенческие годы

Только достойно пройдя искус больших испытаний, Греческий юноша мог в храм элевзинский вступить. ...Хватит ли сил у тебя вести тяжелейшую битву, Разум и сердце твои, чувства и мысль примирить? Хватит ли мужества биться с бессмертною гидрой

сомненья,

Выйти бестрепетно в бой против себя самого?

Хватит ли зоркости глаза, невинности чистого сердца,

Чтобы с обмана сорвать истины светлый венец?

Шиллер

Радость видеть и понимать есть самый прекрасный дар природы.

Эйнштейн

Когда Эйнштейну исполнилось пятнадцать лет, его родители переселились в Италию. В Мюнхене Германа Эйнштейна преследовали неудачи: фабрика не приносила доходов, ему грозило разорение. Нужно было искать успеха в другом месте. Его привлекла Италия и деловыми перспективами, и красочностью жизни. Кроме того, обещали поддержку богатые родственники Полины Эйнштейн - хлеботорговцы в Генуе.

В 1894 г. Герман и Якоб основали электротехническую фабрику в Милане. Она не давала доходов. Тогда братья переехали в Павию. Но и здесь их преследовали неудачи, и вскоре в Милане снова была открыта фабрика "Per la costruzione di dinamo e motori elettrici a corren-ti continue e atlernate" (для производства динамо и моторов постоянного и переменного тока). Фабрика существовала благодаря поддержке родственников - итальянских и немецких представителей семьи Кох.

Альберт оставался в Мюнхене: нужно было закончить гимназию. Но это не удалось. Хотя он опередил своих соучеников по математике и физике, однако пребывание в гимназии становилось для него все более тяжелым. Под влиянием чтения возрастало критическое отношение к гимназической науке. Невыносимыми стали зубрежка латинского и греческого языков, рутина и обилие бесполезных сведений в остальных предметах, казарменный дух гимназии и апломб невежественных гимназических властей.

30

Сосредоточенный, равнодушный к школьным забавам, Эйнштейн не приобрел в школе близких друзей, а семья была далеко. У него все сильнее зрело желание оставить гимназию и уехать к родным. Он уже запасся справкой врача о необходимости полугодичного отдыха в связи с состоянием нервной системы. Однако гимназическое начальство опередило его намерения. Оно давно уже косилось па скептицизм и свободомыслие Эйнштейна. Ему предложили покинуть гимназию, так как его присутствие разрушает у учащихся чувство уважения к школе. За год до окончания Эйнштейн оставил гимназию и уехал к родным. По приезде в Милан он вышел из германского подданства. Италия очаровала Эйнштейна. Античные храмы, музеи и картинные галереи, дворцы и живописные хижины... Люди веселые, приветливые, с непринужденными манерами, они трудятся и бездельничают, веселятся и ссорятся с одинаковой экспансивностью и выразительной жестикуляцией. И всюду музыка и пение и оживленная, мелодичная речь. Какой контраст со строгой чопорностью, окружавшей его в Германии, со стихией предписаний, норм, ранжира и табеля! Он совершил путешествие в Геную, и всюду его не покидало ощущение духовной свободы.

Однако надо было устраивать свою судьбу. Дела отца шли все хуже. Организация электротехнической мастерской в Милане и Павии отняла все сбережения и не принесла доходов. Отец предупредил Альберта, что выделять ему средства становится все труднее и что следует как можно скорее приобрести профессию. Склонности Эйнштейна уже определились: его привлекали математика и теоретическая физика. Но как связать это с практической деятельностью? Отец и дядя настаивали на инженерном поприще. Их совету приходилось следовать, в университет было трудно поступить без гимназического аттестата. На семейном совете было решено, что Альберт поступит в техническое учебное заведение; причем нужно было выбрать такое, где преподавание велось на немецком языке. Германия исключалась, а вне ее наибольшей известностью пользовался Цюрихский политехнический институт (или Политехникум). Эйнштейн отправился в Цюрих. Он

31

блестяще сдал математику, но проявил недостаточные знания по иностранным языкам, ботанике и зоологии. Отсутствие гимназического аттестата сыграло свою роль: его не приняли. Добрый совет Эйнштейну дал директор Политехникума, плененный его математической эрудицией. Следовало закончить одну из швейцарских средних школ и через год поступать вновь. Директор рекомендовал кантональную школу в маленьком городке Аарау как наиболее передовую и по методам обучения, и по составу преподавателей.

Эйнштейну не хотелось возвращаться в среднюю школу, от которой он бежал в Мюнхене, но делать было нечего, и скрепя сердце он поступил в последний класс. Вскоре от его предубеждений не осталось и следа. Преподаватели были друзьями учеников, уроки были интересными, они сопровождались самостоятельной работой учащихся в физической и химической лабораториях; в школьном зоологическом музее работали с микроскопом и ланцетом. Мысль учащихся старших классов обращалась и к общественным проблемам, которыми был насыщен воздух Швейцарии благодаря эмигрантской революционной молодежи. Поселился Эйнштейн у преподавателя школы Винтелера, с детьми которого - своими сверстниками - делил досуг, совершая прогулки в горы. Появились друзья и среди соучеников.

Время, проведенное в Аарау (с осени 1895 г. до весны 1896 г.), показало Эйнштейну, что в школе, не скованной рутиной, руководимой передовыми людьми, преподавание становится интересной, увлекательной профессией, которую легко сочетать с научной деятельностью. В 1896 г. он закончил школу и был принят без экзаменов на педагогический факультет Цюрихского политехникума, подготавливавший преподавателей физики и математики. Здесь Эйнштейн учился с октября 1896 г. по август 1900 г. По существу, это был физико-математический факультет. Эйнштейн записался на курсы математики и физики и на некоторые специальные курсы по философии, истории, экономике и литературе [1]. Но на основные лекции по

1 Вот перечень этих курсов: дифференциальные и интегральные уравнения (Адольф Гурвиц), начертательная геометрия (Вильгельм Фидлер), аналитическая геометрия, теория инвариантов, теория определителей (Карл Фридрих Гейзер), теория определенных интегралов, теория линейных уравнений (Артур Гирш), геометрическая теория чисел, теория функций, эллиптические функции, дифференциальные уравнения в частных производных, вариационное исчисление, аналитическая механика (Герман Минковский), общая механика (Альбин Герцог), применения аналитической механики (Фердинанд Рудио), физика, электротехника (Генрих Фридрих Вебер), физическая практика (Иоганн Пернет), астрофизика, астропомия (Альфред Вольфер), теория научного мышления, философия Капта (Август Штадлер) и из необязательных предметов: проектирование (Эрнст Фидлер), внешняя баллистика (Гейзер), древняя история, геология (Альберт Гейм), история Швейцарии (Вильгельм Эхсли), экономика (Юлис Платтер), статистика, страхование (Якоб Ребштейн); произведения и мировоззрении Гею (Роберт Зайчик).

32

физике и математике он ходил редко. Генрих Фридрих Вебер, читавший курс физики, был выдающимся электротехником, но в области теоретической физики он ограничивал преподавание сведениями, уже известными Эйнштейну. Последний предпочитал непосредственно погружаться в труды Максвелла, Кирхгофа, Больцмана и Герца. В эти годы Эйнштейн переходит от первоначальных интересов, в равной степени направленных к физике и к чистой математике, к преимущественному интересу, сосредоточенному на некоторых коренных проблемах теоретической физики. Математику преподавали, в частности, такие выдающиеся исследователи, как Адольф Гурвиц и Герман Минковский. Но их лекции не заинтересовали Эйнштейна. Причина этого будет освещена позже, в связи с характеристикой отношения Эйнштейна к математике. Минковский - в будущем создатель математического аппарата теории относительности - не видел на своих лекциях ее будущего творца. Когда появилась теория относительности, Минковский заметил, что не ожидал ничего подобного от своего цюрихского студента.

На лекции Минковского и других профессоров, читавших различные разделы высшей математики, аккуратно ходил Марсель Гроссман, с которым Эйнштейн подружился и которого впоследствии привлек к разработке математического аппарата общей теории относительности. Гроссман давал Эйнштейну свои тетрадки с записями лекций. В автобиографии 1949 г. Эйнштейн вспоминает об этом и попутно посвящает несколько слов той свободе в посещении лекций, которой он пользовался в Цюрихе. Принудительное изучение предмета ради экзамена угнетало его.

33

"Такое принуждение настолько меня запугивало, что целый год после сдачи окончательного экзамена всякое размышление о научных проблемах было для меня отравлено. При этом я должен сказать, что мы в Швейцарии страдали от такого принуждения, удушающего настоящую научную работу, значительно меньше, чем страдают студенты во многих других местах. Было всего два экзамена, в остальном можно было делать более или менее то, что хочешь. Особенно хорошо было тому, у кого, как у меня, был друг, аккуратно посещавший все лекции и добросовестно обрабатывавший их содержание. Это давало свободу в выборе занятия вплоть до нескольких месяцев перед экзаменом - свободу, которой я широко пользовался; связанную же с ней нечистую совесть я принимал как неизбежное, притом значительно меньшее зло. В сущности, почти чудо, что современные методы обучения еще не совсем удушили святую любознательность, ибо это нежное растеньице требует, наряду с поощрением, прежде всего свободы - без нее оно неизбежно погибает" [2].

В Цюрих, как и в другие университетские города Швейцарии, стекалась разноплеменная толпа студентов, революционных эмигрантов либо юношей и девушек, покинувших родину из-за национальных и сословных ограничений. Многие из студентов не были революционерами, но почти все были приверженцами демократических идей. Это была среда с большим политическим и научным темпераментом. Даже те представители цюрихской молодежи, чьи интересы были ограничены чистой наукой, не могли не поддаться влиянию среды.

Эйнштейн сблизился со многими из студентов-эмигрантов. Среди его знакомых была Милева Марич, сербская девушка, эмигрантка из Австро-Венгрии. Это была очень серьезная, молчаливая студентка, не блиставшая в студенческой среде ни живостью ума, ни внешностью. Она изучала физику, и с Эйнштейном ее сблизил интерес к трудам великих ученых. Эйнштейн испытывал потребность в товарище, с которым он мог бы делиться мыслями о прочитанном. Милева была пассивным слушателем, но Эйнштейн вполне удовлетворялся этим. В тот период судьба не столкнула его ни с товарищем, равным ему по силе ума (в полной мере этого не произошло и позже), ни с девушкой, чье обаяпие не нуждалось бы в общей научной платформе.

34

Ближайшими друзьями Эйнштейна были упомянутый уже Гроссман, Луи Коллрос и Якоб Эрат. Все они, как и Милева Марич, поступили в Политехникум в 1896 г. Гроссман жил со своими родителями в деревне Тальвиль, на берегу Цюрихского озера, и Эйнштейн часто бывал в этой семье. Якоб Эрат, рядом с которым Эйнштейн сидел обычно на лекциях, жил тоже в семье; у него была мать, очень любившая Эйнштейна. Она много лет вспоминала, как Эйнштейн пришел к ним простуженный и завязапный каким-то странным шарфом, оказавшимся дорожкой с комода - скромным украшением комнаты, которую он снимал у гладильщицы. Кстати, эта гладильщица любила работать под музыку, - и Эйнштейн, услаждая слух доброй женщины своей скрипкой, пропускал лекции и (это ему иногда казалось большой потерей) свидания с друзьями в кафе "Метрополь".

Эйнштейн общался также с семьей Густава Майера, который жил когда-то в Ульме и был другом его отца. Майер и его жена очень любили Эйнштейна. Много позже, в день их золотой свадьбы, Эйнштейн писал супругам Майер:

"Вы были любимыми друзьями моих родителей в Ульме еще в те времена, когда аист только собирался доставить меня из своей неисчерпаемой кладовой. Вы оказали мне сердечную поддержку, когда осенью 1895 г. я приехал в Цюрих и срезался на экзаменах. Ваш гостеприимный дом был всегда открыт для мепя в мои студенческие годы, даже тогда, когда я в грязных башмаках спускался с Утлиберга" [3].

3 Цит. по кн.: Seelig С. Albert Einslein. Leben und Work eines Genies unserer Zeit. Zurich, 1960, p. 7. Далее обозначается: Seelig, с указанием страницы.

Иногда Эйнштейн заходил к своему дальнему родственнику Альберту Карру - цюрихскому представителю фирмы Кох (генуэзских родственников Эйнштейна). Там устраивались домашние концерты: Эйнштейн аккомпанировал жене Карра, обладавшей прекрасным голосом.

Каникулы Эйнштейн проводил у родителей, в Павии или в Милане.

Средства у Эйнштейна были скудные. Дела отца не улучшались. Эйнштейн получал ежемесячно сто франков от своих богатых родственников в Генуе, из них двадцать откладывал: он решил принять швейцарское подданство, а на это нужны были деньги.

35

Осенью 1900 г. Эйнштейн сдал выпускные экзамены и получил диплом. Друзья его также окончили Политехникум (кроме Милевы, окончившей в следующем году, но не получившей диплома - их женщинам не выдавали, заменяя простыми справками об окончании). Отметки Эйнштейна были следующими (по шестибалльной системе): теоретическая физика - 5; физический практикум - 5; теория функций - 5,5; астрономия - 5; дипломная работа - 4,5; общий балл - 4,91.

Несмотря на хорошие отметки и репутацию талантливого исследователя, Эйнштейн не был оставлен при Политехникуме. Друзья же его были оставлены: Гроссман - у Фидлера, Эрат - у Рудио и Коллрос - у Гурвица. Эйнштейн не мог рассчитывать на работу по теоретической или экспериментальной физике. Он не посещал лекций Вебера: из них нельзя было почерпнуть что-либо новое, а в лаборатории Пернета он отбрасывал инструкции для проведения экспериментов и выполнял их по-своему. Он допустил еще более тяжелое нарушение кодекса, назвав однажды Вебера "господином Вебером", а не "господином профессором".

Пришлось искать работу вне Политехникума. Немного Эйнштейн зарабатывал - сущие гроши - вычислительной работой для Цюрихской федеральной обсерватории и ходил по городу в поисках постоянной службы. Он надеялся найти ее в качестве гражданина Швейцарии. В феврале 1901 г., отдав свои сбережения, ответив на вопросы о здоровье и нравах дедушки и заверив надлежащие власти об отсутствии склонностей к алкоголю, Эйнштейн получил швейцарское подданство. В швейцарскую армию нового гражданина не взяли - у него нашли плоскостопие и расширение вен. Эйнштейн продолжал поиски работы, но не находил ее.

В мае Эйнштейну удалось на несколько месяцев устроиться преподавателем профессиональной технической школы в городе Винтертуре. Эйнштейн писал об этом из Милана (куда уехал, ожидая результатов предпринятых им шагов для подыскания работы) одному из цюрихских профессоров:

36

"Я получил предложение работать в технической школе в Винтертуре с 15 мая до 15 июля - взять на себя преподавание математики, пока постоянный преподаватель будет проходить военную службу. Я вне себя от радости, получив сегодня извещение, что вопрос разрешен окончательно. Понятия не имею, какой гуманный человек меня туда рекомендовал: ведь я ни у одного из моих бывших профессоров не был на хорошем счету и в то же время мне предложили это место без моей просьбы. Есть еще надежда, что я потом получу постоянную службу в швейцарском патентном бюро... Должен добавить, что я веселый зяблик и не способен предаваться меланхолическим настроениям, если только у меня не расстроен желудок или что-нибудь подобное... На днях я пешком пойду по Шплюгену, чтобы связать приятную обязанность с удовольствием" [4].

4 Seelig, 80.

Живо представляешь себе "веселого зяблика", без средств к существованию, без перспектив постоянной службы, находящегося "вне себя от радости" от перспективы получения работы на два месяца и пешей прогулки по горам Шплюгена к месту этой работы. Эйнштейн принадлежал к счастливым натурам, которые легко переносят огорчения, но очень живо и радостно ощущают самую незначительную удачу. Это не мешало глубокому внутреннему драматизму; напротив, в душе, освобожденной от повседневных тревог и огорчений, свободно разыгрывались неличные трагедии.

Осенью 1901 г. Эйнштейн снова оказался без работы. Следующим кратковременным пристанищем был Шафгаузен - маленький городок на берегу Рейна, известный своими водопадами, привлекавшими множество туристов. Здесь жила семья Конрада Габихта, с которым Эйнштейн познакомился в Политехникуме. По рекомендации Габихта Эйнштейн поступил репетитором в частный пансион для учащихся. Ему была поручена подготовка учеников для экзамена на аттестат зрелости. Он принялся за преподавание и старался сделать его живым и интересным, избегая рутины, которая ему самому причинила столько неприятностей в детстве. Но у Эйнштейна и его патрона Якоба Нюэша не совпали взгляды на методы и цели преподавания. Независимость суждений и самостоятельность, проявленные репетитором, не устраивали Нюэша, и Эйнштейн был уволен.

В Шафгаузене Эйнштейн часто встречался с Габихтом. Они вели беседы, играли дуэтом на скрипке Здесь зародилась их дружба, укрепившаяся затем в Берне.

Эйнштейн вновь остался без работы, и вновь ему не удалось найти место учителя. Стена, воздвигнутая перед ним в Политехникуме, охватывала и среднюю школу. Он недоумевал: может быть, сказываются общие условия безработицы, может, дело в том, что он не коренной швейцарец, или в его происхождении, или в нем самом?

В письме Эйнштейна из Милана говорилось о надежде получить место в патентном бюро. Об этом хлопотал Марсель Гроссман. Весной 1902 г. Эйнштейн снова был в Милане и направлял оттуда просьбы о работе в различные университеты. Между тем Гроссману удалось через своего отца добиться для Эйнштейна места в Бернском патентном бюро. Директор этого бюро, инженер Фридрих Галлер, был другом отца Марселя.

В апреле 1902 г. Эйнштейн писал Гроссману:

"Милый Марсель! Когда я вчера нашел твое письмо, оно меня тронуло верностью и человеколюбием, заставившими тебя не забыть старого неудачливого друга. Нелегко было бы найти лучших друзей, чем ты и Эрат. Не стоит даже говорить, как был бы я счастлив, если бы мне удалось приобрести такой круг деятельности; я приложил бы все старания, чтобы с честью оправдать данные мне рекомендации. Уже три недели нахожусь у родителей, чтобы отсюда добиться места ассистента при каком-нибудь университете. Давно я бы добился места, если бы Вебер не интриговал против меня. Но, невзирая на это, не пропускаю ни одной возможности и не теряю юмора... Бог сотворил осла и дал ему толстую кожу.

Сейчас у нас прелестнейшая весна и весь мир глядит на тебя с такой счастливой улыбкой, что поневоле отбрасываешь всякую хандру. Кроме того, музыкальные встречи оберегают меня от скисания. В отношении науки - задумано несколько прекрасных идей, но их еще следует высиживать..." [5]

5 Seelig, 85-86.

"Прекрасные идеи" относились к молекулярному притяжению, а эпитет не имел никакого личного оттенка.

Эйнштейн любовался не своими достижениями - это ему было чуждо всегда, - он любовался гармонией природы. Упомянув о работах по молекулярному притяжению, Эйнштейн продолжает: "Как прекрасно почувствовать единство целого комплекса явлений, которые при непосредственном восприятии казались разрозненными!" [6]

Сейчас мы знаем, что в этой фразе заключена программа, охватывающая всю жизнь Эйнштейна.

Когда Эйнштейн приехал в Берн, Галлер долго беседовал с Эйнштейном и проникся убеждением, что этот скромный молодой человек подойдет для работы в патентном бюро, несмотря на отсутствие практического опыта. Он принял Эйнштейна на должность технического эксперта третьего класса с жалованьем в 3500 франков в год. В 1902 г. Эйнштейн переселился в Берн и начал работать в патентном бюро. Вскоре он вызвал в Берн Милеву Марич. Свадьба с Милевой задерживалась из-за болезни отца Эйнштейна. Он, как и мать Эйнштейна, были против этого брака, и во время болезни отца Эйнштейн не решался нарушить его запрет. Однако на смертпом одре отец Эйнштейна согласился на брак сына. Свадьбу отпраздновали 6 января 1903 г.; поужинали с появившимися у Эйнштейна бернскими друзьями и отправились из ресторана домой, где выяснилось, что Эйнштейн где-то оставил ключ от квартиры [7]. Они снимали небольшую квартиру (Кrаmgasse, 49), которую позже сменили на другую (Archivstrasse, 8) - мансарду, откуда открывался великолепный вид на Бернские Альпы и долину Аара.

6 Ibid., 86-87.

7 Ibid., 95.

38

Берн

Составление патентных формул было для меня благословением. Оно заставляло много думать о физике и давало для этого повод. Кроме того, практическая профессия - вообще спасение для таких людей, как я: академическое поприще принуждает молодого человека беспрерывно давать научную продукцию и лишь сильные натуры могут при атом противостоять соблазну поверхностного анализа.

Эйнштейн

Создавала ли служба в патентном бюро такие благоприятные возможности для творчества Эйнштейна, как это ему казалось? Приведенная выдержка из написанного за месяц до смерти автобиографического наброска - веское свидетельство в пользу такой оценки. Все ретроспективные обзоры своего творческого пути были для Эйнштейна формой определенных концепций, относящихся к природе физических идей и к логическим, психологическим и культурным предпосылкам их генезиса и развития. Дело не в том радостном ощущении, которое характерно для бернского периода жизни Эйнштейна. Подводя итоги своего творческого пути, Эйнштейн подчеркивал то, что действительно было канвой научного подвига.

Жизнь Эйнштейна в Берне можно сравнить с годами, которые Ньютон провел в Вулсторпе (1665-1667) вовремя чумы, заставившей его уехать из Кембриджа. Ньютон там пришел к идеям дифференциального исчисления, к закону всемирного тяготения и к разложению света на монохроматические лучи. В Берне Эйнштейн создал теорию броуновского движения, теорию фотонов и специальную теорию относительности. Это косвенное, но, может быть, еще более убедительное подтверждение приведенной оценки бернских условий для научного творчества.

Вместе с тем история науки в целом противостоит такой оценке. Подавляющее большинство открытий в физике нового времени было сделано профессиональными исследователями, по большей части прошедшими нормаль-

40

ный путь: студенческая скамья, научная школа, самостоятельная, но примыкающая к направлению школы задача. Быть может, оценка бернских условий для генезиса теории относительности - вне истории науки, она ограничена биографией Эйнштейна? На этот вопрос можно было бы ответить утвердительно, если бы биография Эйнштейна не оказалась таким большим и значительным отрезком истории науки. Но она была особым отрезком, при изложении которого аналогии мало что дают.

Отметим, что Эйнштейн в течение всей своей жизни в сущности продолжал бернскую традицию: он разрабатывал очередные проблемы, никогда, по-видимому, не думая об оценке результатов. Но это можно было делать в качестве профессионального исследователя - профессора в Праге, Цюрихе, Берлине, Принстоне, - после создания теории относительности. В начале творческого пути посторонняя, не связанная с наукой работа облегчала полное поглощение интеллекта содержанием проблем.

Теория относительности с ее прозрачной и законченной первоначальной формулировкой, с открытыми и расчищенными путями дальнейшего обобщения и воздействия на все области науки и культуры требовала беспрецедентной способности исключить из сознания все "человеческое, слишком человеческое", включая "соблазны поверхностного анализа".

Соотношения теории относительности Эйнштейна были выведены из пересмотра основных представлений о пространстве и времени, пересмотра, который не был подчинен каким-либо внешним требованиям. Вероятно, Эйнштейн пришел бы к теории относительности и в иных условиях. Но нам свобода от академических рамок кажется наиболее естественным условием открытия. Картина свободной бернской жизни Эйнштейна, без каких-либо элементов академического авторитета и авторитарности, иллюстрирует оценку службы в патентном бюро, записанную в автобиографическом наброске 1955 г.

Нет оснований сомневаться и в серьезном значении физических интересов, навеянных этой службой. Трудно было прийти к новым физическим идеям и резко изменить не только содержание, но и стиль теоретической физики, не черпая ассоциаций и аналогий из достаточно далеких источников. Нам неизвестны первоначальные наброски, отрывки, предварительные записи Эйнштейна. Если они суще-

41

ствуют, вероятно, там встретятся конструктивные и технологические образы. Во всяком случае, сам Эйнштейн говорил - не только в приведенном отрывке, - что ему во многом помогло изучение техники, именно такое изучение, какое имело место в патентном бюро; знакомство с непрерывным потоком новых, подчас остроумных, кинематических принципов, технологических рецептов, усовершенствований старых предложений, переносов конструкций и схем из одной области в другую, неожиданных мобилизаций старых приемов для решения новых задач.

Для оценки технологических интересов Эйнштейна, быть может, характерно следующее. У Габихта, о котором мы уже знаем, был младший браг Пауль, живший тогда в Берне и учившийся в гимназии. Он интересовался электротехникой и после гимназии уехал в Шафгаузен, где построил фабрику электроизмерительной аппаратуры. Пауль Габихт и Эйнштейн сконструировали в 1908 г. прибор, измеряющий напряжения до 0,0005 вольт, а в 1910 г. - "потенциал-мультипликатор Эйшптейна - Габихта". Эйнштейн конструировал различные приборы и позже.

В первые месяцы пребывания в Берне Эйнштейн хотел давать частные уроки. В газете появилось объявление, гласившее, что Альберт Эйнштейн, окончивший цюрихский Политехникум, дает уроки физики по три франка за час. Объявление привлекло мало учеников, но привело к знакомству с Морисом Соловином, уроженцем Румынии, приехавшим в Цюрих, поступившим в университет и желавшим углубить свои знания по физике. Первая беседа привела к последующим встречам и затем к тесной дружбе. Мы располагаем воспоминаниями Соловина и изданными им письмами Эйнштейна к нему [1].

1 Einstein A. Lettres a Maurice Solovine. Paris, 1956. Далее обозначается: Letties a Solovine, с указанием страницы.

Морис Соловин изучал в университете философию, литературу, греческую филологию, математику, физику, геологию и слушал лекции на медицинском факультете. Его интересовала теоретическая физика как средство для формировапия общего представления о природе. Когда Соловин пришел по объявлению, Эйнштейн встретил его в полутемном коридоре, и Соловин был поражен необычайным блеском больших глаз Эйнштейна. Первая беседа устано-

42

вила общность взглядов и интересов. Встречи продолжались. Вместо уроков они вели длительные беседы. Вскоре к ним присоединился Конрад Габихт, приехавший в Берн, чтобы завершить свое математическое образование.

Обычно они встречались после работы и занятий, совершали прогулки или собирались на квартире у кого-нибудь, вела беседы а вместе много читали. Они прочитали некоторый философские сочинения Спинозы и Юма, новые книги Маха, Авенариуса и Пирсона, работу Ампера "Опыт философии науки", статьи Гельмгольца, знаменитую лекцию Римана "О гипотезах, лежащих в основании геометрии", математические трактаты Дедекинда и Клиффорда, "Науку и гипотезу" Пуанкаре и многое другое.

Вместе они прочитали также "Антигону" Софокла, "Андромаху" Расина, "Рождественские рассказы" Диккенса, "Дон-Кихот" Сервантеса и другие шедевры мировой литературы.

Многое из перечисленного было уже знакомо Эйнштейну и его друзьям, но их пленял обмен мыслями. Часто одна страница, одна фраза вызывала дискуссию, продолжавшуюся до глубокой ночи и в следующие дни. До приезда Милевы друзья обедали вместе. Обычно обед состоял из колбасы, сыра, фруктов и чая с медом. Уроки оплачивались плохо, их было мало, и Эйнштейн шутя говорил, что, может быть, было бы лучше ходить по дворам и играть на скрипке. Тем не менее они чувствовали себя счастливыми. Рассказывая об этих годах, Соловин вспоминает слова Эпикура: "Что может быть прекрасней веселой бедности".

Содружество существовало в течение трех лет. Они дали ему название "академия Олимпия".

Эйнштейн до конца жизни вспоминал об этом времени. В 1953 г. он написал Соловину:

"Бессмертной академии Олимпия.

В своей недолгой деятельности ты с детской радостью наслаждалась всем, что ясно и разумно. Мы создали тебя, чтобы потешиться над твоими громоздкими, старыми и чванными сестрами. До какой степени мы были правы, убедили меня годы внимательного наблюдения.

Все три твоих члена остались стойкими. Они немного одряхлели, и все же частица твоего чистого и животворного света еще освещает их одинокий жизненный путь, потому что ты ее состарилась вместе с ними, подобно салату, переросшему в ботву.

Тебе наша преданность и привязанность до последнего высокоученого вздоха.

Ныне только член-корреспондент А. 9. Принстон. 3. IV. 53 г." [2]

43

В этом сопоставлении академии Олимпия с ее "громоздкими, старыми и чванными сестрами" содержится не слишком веселый итог. После долгих лет общения с гелертерскими кругами мысль тянулась к веселой независимости бернских лет, к юношеским насмешкам над угрюмо чопорной респектабельностью этих кругов и, главное, к атмосфере "наслаждения всем, что ясно и разумно".

Оптимистический рационализм бернской среды имел, как мы увидим, непосредственную связь с научными идеалами, приведшими Эйнштейна к его открытиям.

Тремя членами Олимпии были Эйнштейн, Соловип и Габихт. Вскоре к ним присоединился сослуживец Эйнштейна, итальянец, инженер Микеланжело Бессо - муж Анны Винтелер, дочери преподавателя в Аарау. Заметим, кстати, что здесь же, в Берне, жил Пауль Винтелер, товарищ Эйнштейна по Аарау и будущий муж его сестры Майи. Бессо в 1904 г. с помощью Эйнштейна поступил в Бернское патентное бюро. Они работали вместе и вместе возвращались со службы. Энциклопедические знания Бессо в философии, социологии, медицине, технике, математике и физике позволяли Эйнштейну делиться со своим другом самыми разнообразными идеями. Эйнштейн говорил потом, что во всей Европе он бы не мог найти "лучшего резонатора новых идей". По-видимому, Бессо отличался удивительной способностью воспринимать новые идеи и прибавлять к ним некоторые существенные, недостающие штрихи. Сам Бессо говорил о беседах с Эйнштейном: "Этот орел на своих крыльях поднял меня - воробья - на большую высоту. А там воробушек вспорхнул еще немного вверх" [3].

2 Lettres h Solovine, 125.

3 Seelig, 120.

Это сказано по поводу первого устного изложения идеи относительности. Выслушав Эйнштейна, Бессо понял, что речь идет о начале новой эпохи в науке и вместе с тем обратил внимание Эйнштейна на ряд новых моментов. Беседы эти продолжались, и свою знаменитую статью "К электродинамике движущихся тел" Эйнштейн закончил словами:

44

"В заключение отмечу, что мой друг и коллега М. Бессо явился верным помощником при разработке изложенных здесь проблем и что я обязан ему рядом ценных указаний".

Другом Эйнштейна был также Люсьен Шаван, появившийся в квартире Эйнштейна, как и Соловин, после объявления о частных уроках. Он был уроженцем западной Швейцарии, служил в почтово-телеграфном управлении Берна, расположенном этажом ниже патентного бюро (при посредстве Шавана Эйнштейн попытался получить место в этом управлении), и хотел пополнить свои физические знания, слушая лекции в университете и занимаясь с Эйнштейном. В блокноте Шавана сохранились тщательные записи уроков. Кроме того, он подробно обрисовал наружность Эйнштейна в надписи на его фотографии:

"Рост Эйнштейна 176 сантиметров. Он широкоплеч, с некоторым наклоном вперед. Его короткий череп кажется невероятно широким. Цвет лица матовый, смуглый. Над большим чувственным ртом узкие черные усы. Нос с легким орлиным изгибом. Глаза карие, светятся глубоко и мягко. Голос пленительный, как вибрирующий звук виолончели. Эйнштейн говорит довольно хорошо по-французски, с легким иностранным акцентом" [4].

4 Ibid., 95.

С приездом Милевы жизнь Эйнштейна вошла в семейную колею, но встречи и беседы друзей не прекратились. Милева была их внимательным, но молчаливым слушателем.

Соловин рассказывает, как, наговорившись и накурившись, друзья слушали игру Эйнштейна на скрипке, а иногда отправлялись на прогулку, где продолжались беседы. После полуночи они поднимались на Гуртен - гору, расположенную к югу от Берна. Вид ночного звездного неба привлекал их мысли к астрономическим вопросам, и разговор возобновлялся с новой силой. Здесь они оставались до рассвета и наблюдали восход солнца. Они видели, как солнце поднимается из-за горизонта, как темные, еле раз-

45

личимые очертания Альп окрашиваются розовым цветом. Взору открывалась огромная горная страна. Наступало утро. Юноши входили в маленький ресторан, пили кофе и часам к девяти спускались вниз, уставшие и счастливые. Иногда они пешком уходили за тридцать километров в город Тун. Прогулка длилась с шести утра до полудня, и снова их окружали Альпы. Друзья говорили об истории Земли, о формировании гор, о геологических проблемах. В городе они завтракали, затем располагались на берегу озера и оставались там весь день. Вечером они поездом возвращались в Берн [5].

Соловин вспоминает о беседах с Эйнштейном в этот период. Эйнштейн говорил медленно и монотонно, подчас смолкал в глубокой задумчивости. Он весь погружался в процесс мышления, не замечая ничего вокруг. Некоторые простые эпизоды, запечатлевшиеся в воспоминаниях Соловина, кажутся характерными.

В день рождения Эйнштейна Соловин и Габихт, собираясь к нему на ужин, принесли с собой икру, которую тот никогда еще не пробовал. Завязался разговор о принципе инерции. Когда сели за стол, Эйнштейн был так поглошен этой темой, что незаметно для себя съел икру, даже не разобрав, что он ест, и с удивлением воззрился своими огромными глазами на смеющихся друзой. Помолчав, он заметил: "Стоит ли угощать неотесанного парня деликатесами, он все равно их не оценит" [6].

5 Lettres a Solovine (Introduction de Solovine), XII-XIII.

6 Ibid., IX-X.

Вот другой эпизод из воспоминаний Соловина. В Берне часто гастролировали крупные музыканты, и друзья бывали па их концертах. Однажды предстоял концерт чешского симфонического оркестра. Накануне Соловин предложил друзьям посетить его, по как раз в эти дни они с увлечением читали Юма. По предложению Эйнштейна решили отказаться от концерта, а вместо этого собраться у Соловина, чтобы продолжать чтение. Однако па другой день Соловину попался билет и он отправился на концерт, приготовив па ужин крутые яйца, которые любили его товарищи, и оставив записку: "Amicis carissimis ova durael salutem" ("Дорогим друзьям крутые яйца и привет"). Прочитав записку, Эйнштейн и Габихт поужинали, накурили в комнате и ушли, оставив записку: "Ami-

46

ca carissimo fumum spissum et salutem" ("Дорогому другу густой дым и привет"). Назавтра при встрече Эйнштейн, грозно нахмурив брови, разразился тирадой: "Несчастный! Вы посмели пренебречь заседанием академии ради каких-то скрипок? Варвар, тупица! Еще одна такая выходка и вы будете исключены". Затем они уселись за Юма и разошлись после полуночи [7].

В 1905 г. Габихт, а затем и Соловип покинули Берн. В мае 1906 г. Эйнштейн писал Соловину: "С тех пор как вы уехали, я больше ни с кем не общаюсь. Даже обычные по возвращении домой беседы с Бессо прекратились" [8]. В том же письме Эйнштейн сообщает, как была встречена опубликовапная в 1905 г. статья о теории относительности. И тут же двадцатишестилетний ученый пишет о себе: "...Я приближаюсь к неподвижному и бесплодному возрасту, когда жалуются на революционный дух молодых".

В письмах к Габихту и Соловину в 1905 г. упоминаются статьи о броуновском движении, квантах света и теории относительности. В марте 1905 г. Эйнштейн приглашает Габихта вновь посетить Берн. "Сим Вас призывают присутствовать на нескольких заседаниях нашей достославной академии, дабы тем самым увеличить ее состав на пятьдесят процентов" [9]. Вскоре после этого Эйнштейн направляет Габихту следующее письмо:

7 Ibid., XI-XII.

8 Ibid., 4-6.

9 Seelig, 124.

"Милый Габихт! Между нами сейчас - священное молчание, и то, что я его прерываю малозначительной болтовней, покажется профанацией. По разве в этом мире не всегда так происходит с возвышенным? Что Вы вообще делаете, Вы, замороженный кит, высохший и законсервированный обломок души, и... что бы еще, начиненное на семьдесят процентов гневом и на тридцать жалостью мог бы я бросить Вам в голову? Вы можете поблагодарить последние тридцать процентов за то, что я Вам, исчезнувшему на пасху, не отправил жестяную банку с нарезанным луком и чесноком. Почему Вы все еще не присылаете мне свою диссертацию? Разве Вы, жалкая личность, не знаете, что я буду одним из полутора парней, которые прочтут ее с удовольствием и интересом? Я Вам за это обещаю четыре работы, причем первую пришлю

47

скоро, так как я жду авторские экземпляры. Она посвящена излучению и энергии света и очень революционна, как Вы сами увидите, если сначала пришлете мне свою работу. Вторая работа содержит определение истинной величины атомов с помощью изучения диффузии и внутреннего трения в жидких растворах. Третья доказывает, что согласно молекулярной теории тепла взвешенные в жидкости тела величиной порядка 1/1000 мм испытывают видимое беспорядочное движение, обязанное тепловому движению молекул. Такое движение взвешенных тел уже действительно наблюдали биологи - они назвали его броуновским молекулярным движением. Четвертая работа исходит из понятий электродинамики движущихся тел и видоизменяет учение о пространстве и времени; чисто кинематическая часть этой работы представит для Вас интерес... Вас приветствует Ваш Альберт Эйнштейн. Дружеский привет от моей жены и годовалого пискуна!"

Через несколько месяцев Эйнштейн снова написал Габихту. Он советовал ему попытаться поступить в патентное бюро. Далее идут чрезвычайно интересные замечания о выводах из теории относительности и некоторых других проблемах физики.

"Вы стали страшно серьезным, - пишет Эйнштейн. - Вот что делает одиночество в Вашем проклятом хлеве! Быть может, я предложу Галлеру Вашу кандидатуру и удастся контрабандой включить Вас в число батраков патентного бюро. Вы приедете тогда? Подумайте, ведь кроме восьми часов работы остается восемь часов ежедневного безделья и сверх того воскресенье. Как я радовался бы Вашему присутствию, а Вы в дружеском общении вновь обрели бы свой задор".

Уже были опубликованы статьи, возвещавшие революцию в физике; они получили признание таких ученых, как Планк и Вин, но Эйнштейну и в голову не приходят какие-либо мысли о личной судьбе. Его больше интересует судьба Габихта. Далее, несмотря на начавшуюся прелюдию славы, Эйнштейну по-прежнему нравится его положение: восемь часов в патентном бюро и затем еще восемь часов "безделья", т.е. независимых занятий наукой.

В последующих строках письма Эйнштейн говорит о научных проблемах, которые могли бы заинтересовать Габихта. Среди них упоминается проблема спектров. "Но я думаю, - пишет Эйнштейн, - что не существует простой

48

связи между этими явлениями и другими, уже изученными, поэтому проблема спектров пока еще остается малообещающей" [10]. Через десять лeт выяснилось, что проблема спектров, т.е. излучения атомами вещества различных по длине электромагнитных волн, действительно не может быть простым и непосредственным образом связана с уже известными закономерностями.

Наконец, Эйнштейн рассказывает о неожиданном выводе из специальной теории относительности: масса тела должна быть пропорциональна его энергии. Письмо Габихту не имеет даты, но, по-видимому, оно отправлено в сентябре 1905 г.; в это время Эйнштейн послал в "Annalen der Physik" статью о пропорциональности между энергией и массой тела - отправном пункте наиболее значительных для практики выводов из теории относительности.

Два года спустя после отъезда Соловина и Габихта из Берна у Эйнштейна появился друг, с которым он мог обсуждать проблемы теоретической физики. Но это был уже новый период: приехавший в Берн Якоб Иоганн Лауб был направлен известным ученым Вильгельмом Випом, чтобы познакомиться со знаменитым автором теории относительности, после своего реферата об этой теории в семинаре Вина. Беседы Лауба с Эйнштейном привели к появлению совместно написанных статей. Что не изменилось - это простая и сердечная манера Эйнштейна, которого Лауб застал в холодной квартире за попытками растопить печь, а потом в течение нескольких недель ежедневно ожидал его возле патентного бюро, чтобы провожать домой и по дороге беседовать. Лауб запомнил также совместное посещение оперы "Гибель богов" в бернском театре и восторженный шепот Эйнштейна: "Вагнер, да простит меня бог, не в моем вкусе, но как утонченно выражен в этой сцене смерти Зигфрида не сломленный судьбой дух героя!.." [11]

10 Seelig, 125.

11 Ibid., 121.

В это время Эйнштейн встречался с несколькими любителями музыки, даже не догадывавшимися о его научной деятельности. В 1907-1908 гг. он довольно регулярно музицировал в составе квинтета, куда входили, кроме него, юриcг, математик, переплетчик и тюремный надзиратель. Они играли Гайдна, Моцарта и Бетховена.

49

В заключение - несколько слов о семейной жизни Эйнштейна в Берне. В 1904 г. у них родился сын Ганс-Альберт (он впоследствии учился в Цюрихе, в 1937 г. переехал в США и стал крупным гидравликом, профессором Калифорнийского университета). Расходы росли. Эйнштейн не замечал нужды, он даже сказал, когда ему повысили жалованье до 4500 франков: "Что делать с такими большими деньгами?" Милева, напротив, не знала, как свести концы с концами. Но не это нарушало ее покой. Главное заключалось в различии склонностей. Она всегда была рада приходу Соловина или Габихта, но прогулки, обеды вне дома, домашние концерты, большие компании - все это было не по ней. Научные интересы Эйнштейна также становились все более далекими для Милевы. Ее раздражительность усугублялась болезнями - суставным туберкулезом, сильной неврастенией и возраставшей с течением времени патологической ревнивой подозрительностью. Постепенно ровный характер и рассеянная доброта Эйнштейна начали раздражать Милеву. Росло отчуждение. Впрочем, оно приняло явные и резкие формы позже, когда Эйнштейн уже давно покинул Берн.

"Надличное"

Чтобы идти в этом мире верным путем, надо жертвовать собой до конца. Назначение человека состоит не в том только, чтобы быть счастливым. Он должен открыть для человечества нечто великое.

Э. Ренан

Подлинная оценка человека состоит в том, в какой степени и в каком смысле он смог добиться освобождения от своего "я".

Эйнштейн

Еще в отрочестве Эйнштейн хотел уйти от чисто личных повседневных интересов. Но он долго не знал, какой именно высокой, выходящей за рамки чисто личных интересов идее нужно посвятить интеллектуальные силы, и погрузился в религиозность. От религии Эйнштейн перешел к активному свободомыслию, к активному служению "надличной", по рациональной, реальной идее. Непосредствепным толчком было, как мы видели, чтение научно-популярных книг. Оно вызвало не только враждебное отношение к религиозной догме, не выдержавшей сопоставления с научной картиной мира. Эйнштейн пришел к социальному протесту и навсегда удалился из круга традиционных взглядов своей среды. Он писал в своей автобиографии, что библейские легенды, падая под ударами науки, опрокинули в его сознании и авторитет государства. Государство, воспитывая молодежь в религиозном духе, обманывает ее. "Это был потрясающий вывод", - говорит Эйнштейн.

"Такие переживания породили недоверие ко всякого рода авторитетам и скептическое отношение к верованиям и убеждениям, жившим в окружавшей меня тогда социальной среде. Этот скептицизм никогда меня уже не оставлял..." [1]

1 Эйнштейн, 4, 260.

51

Эйнштейн не перешел к религиозному и социальному индифферентизму, ведь индифферентизм тоже был одной из традиций среды, с которой он порвал в ранней юности. Отбросив религию, Эйнштейн пришел к идее, которая оказалась стержневой для всей его жизни и всего творчества. Основным, всеподчиняющим стремлением стало стремление к познанию объективного, "внеличного" и "надличного" мира.

"Там, вовне, был этот большой мир, существующий независимо от нас, людей, и стоящий перед нами как огромная вечная загадка, доступная, однако, по крайней мере отчасти, нашему восприятию и нашему разуму. Изучение этого мира манило как освобождение, и я скоро убедился, что многие из тех, кого я научился ценить и уважать, нашли свою внутреннюю свободу и уверенность, отдавшись целиком этому занятию. Мысленный охват в рамках доступных нам возможностей этого внеличного мира представлялся мне, наполовину сознательно, наполовину бессознательно, как высшая цель. Те, кто так думал, будь то мои современники или люди прошлого, вместе с выработанными ими взглядами были моими единственными и неизменными друзьями. Дорога к этому раю была не так удобна и завлекательна, как дорога к религиозному раю, но она оказалась надежной, и я никогда не жалел, что по ней пошел" [2].

2 Эйнштейн, 4, 240.

Идея объективности мира - глубокая и фундаментальная основа мировоззрения Эйнштейна - была связана с юношескими поисками "надличного" и имела некоторый эмоциональный и моральный аспект. Когда впоследствии Эйнштейн столкнулся с представлением о мире как комплексе ощущений - элементов субъективного опыта, он отнесся резко отрицательно к такому представлению. Здесь сказалось не только стихийное убеждение каждого естествоиспытателя в реальности мира, - такого убеждения, как показывает история науки, недостаточно для рационального сознательного выбора философских позиций. У Эйнштейна уже в юности "большой мир, существующий независимо от нас, людей", был объектом изучения, выводящего человека за пределы его ощущений и мыслей. Концепция мира как упорядоченной системы ощущений не могла не быть чуждой Эйнштейну. Соответственно ему было чуждо представление о возможности априорно-логического познания мира. В конце концов из такой позиции вырастала позитивная физическая идея: нужно найти величины, которые остаются неизменными при любых системах описания, применяемых при изучении законов природы.

52

В приведенном отрывке из автобиографии Эйнштейна указаны истоки еще одной фундаментальной идеи. Мир как "огромная вечная загадка" не совпадает ни с нашими ощущениями, ни с логическими конструкциями. Он противостоит им как независимая реальность. Поэтому познание мира - процесс приближения к истине. Антидогматическая тенденция науки связана с признанием независимости ее объекта.

Гносеологические идеи Эйнштейна были четко изложены им после основных физических открытий. Но они не были выводом из уже сделанных шагов. Теория относительности вышла за пределы того, что можно было сделать в физике на основе чисто стихийного убеждения в единстве и познаваемости мира. Это убеждение приобретало у Эйнштейна все более последовательный и осознанный характер уже в юности. Меньше всего здесь можно говорить о "влиянии" в смысле заимствования исходных идей из философской и естественнонаучной литературы, прочитанной Эйнштейном в Мюнхене, Цюрихе и Берне. Он уже в юности не был учеником, и его взгляды не укладывались в рамки какой-либо школьной философии.

Пожалуй, только со Спинозой Эйнштейна связывало ощущение какой-то конгениальности. Вообще же в арсенал идей, действительно работавших при создании теории относительности, понятия и термины, почерпнутые из книг, входили преображенными, часто изменившими основной смысл. Они еще более оттачивались в процессе применения к физическим проблемам, при разработке новых физических теорий.

При этом, разумеется, исчезали сравнительно кратковременные увлечения, исчезали противоречия, характерные для первоначального развития философских взглядов.

В своей автобиографии 1949 г. Эйнштейн говорит, что сделанный в ней схематический рисунок не передает сложности и даже хаотичности хода духовного развития. Ретроспективно это развитие выглядит органическим, но в действительности оно напоминало беспорядочную смену изображений в калейдоскопе. Эйнштейна интересовала единая схема, охватывающая законы бытия в целом.

53

Вспоминая свою юность, он, естественно, упорядочивал ее в свете зрелых, развитых идей, выкристаллизовавшихся позже. Если учесть эту неизбежную аберрацию, то рекопструкция идейного развития, данная в автобиографии и игнорирующая "атомистическую структуру" сознательной деятельности человека, правильно передает главное содержание юношеских идей Эйнштейна.

"В развитии человека моего склада поворотная точка достигается тогда, когда главный интерес жизни понемногу отрывается от мгновенного и личного и все больше и больше концентрируется в стремлении мысленно охватить природу вещей. С этой точки зрения приведенные выше схематические заметки содержат верного столько, сколько вообще может быть сказано в таких немногих словах" [3].

3 Эйнштейн, 4, 260.

Ретроспективная оценка ранних этапов духовного развития в свете позднейших взглядов необходима в научной биографии почти каждого мыслителя, но для Эйнштейна она имеет особый смысл. Это следует из приведенных только что строк: отрыв главных жизненных интересов от кратковременного и личного заставляет мыслителя впоследствии искать единый и цельный рисунок его действительной, очень сложной и противоречивой духовной жизни. Это относится не только к калейдоскопическому потоку непосредственных впечатлений, но и к потоку философских и научных идей, почерпнутых юношей в книгах. Когда Эйнштейн на склоне лет вспоминал об идеях Юма, Канта и т.д. и уточнял свои позиции по отношению к этим идеям, он вовсе не исправлял прошлое, он только указывал, что в прошлом произвело на него не мимолетное, а сохранившееся впечатление, какие философские влияния оказались не только эпизодами его личной жизни, но и основой научного подвига, т.е. эпизодами истории науки.

Эйнштейн относился к своему собственному идейному развитию так же, как и ко всему остальному: он и здесь стремился выйти в сферу "надличпого". В данном случав "надличное" - это те философские понятия и идеи, которые отстоялись в сознании ученого и стали в некоторой мере основой новых научных представлений. Разграничение личной биографии и "надличной" истории науки

54

очень характерно для воспоминаний Эйнштейна. Он перебирает факты и мысли и откладывает в сторону все, что осталось личным, чисто биографическим, оставляя то, что вошло в творческую жизнь. Такое разграничение позволяет правильнее понять некоторые воспоминания и оценки Эйнштейна. Например, мы увидим позже, что сочувствие философским взглядам Маха осталось в воспоминаниях Эйнштейна чисто биографическим эпизодом, а стихийное вначале, потом все более сознательное недоверие и даже антипатия к философии Маха выросли в существенную предпосылку "надличного" мировоззрения, из которого вытекал пересмотр классической физики.

Остановимся на гносеологических экскурсах в автобиографии 1949 г. (может быть, правильнее их назвать "эпистемологическими"; слово "эпистемология", иногда применяемое как синоним слова "гносеология", все же несколько уже по содержанию: оно относится чаще всего к собственно научному познанию и обозначает теорию науки). Исходная идея гносеологических экскурсов в автобиографии Эйнштейна - независимость мира от познания. Впрочем, это исходная идея не только собственно гносеологических замечаний, по и всей автобиографии в целом. В ней удивительно рельефно показана непрерывная линия от отроческих и юношеских порывов в "надличное" до теории относительности, установившей строгим и универсальным образом, какие физические соотношения выражают структуру мира, независимую от систем отсчета.

Эйнштейн рассматривает, с одной стороны, ощущения и, с другой - понятия, которые могут быть чисто логически выведены одно из другого согласно твердым правилам, установленным логикой. Но исходные понятия могут быть произвольными. Логическое мышление гарантирует только одно: соотношения между понятиями выведены соответственно принятым логическим правилам. В этом смысле логически выведенное предложение будет верным.

Но логика не может обосновать истинность предложений в смысле их соответствия объективной реальности. Гарантией служит связь логически выведенных предложений с теми ощущениями, которые человек получает через органы чувств. Сами по себе ощущения еще не указывают природу вещей; наука пользуется логическим выведением понятий. Но эти понятия приобретают

55

"смысл" или содержание только в силу их связи с ощущениями. Чисто логически нельзя прийти к представлению о действительных связях в природе. Эйнштейн иллюстрирует это, напоминая об "актах удивления". Когда те или иные восприятия не соответствуют установившимся понятиям, мы считаем это "чудом" или "удивительным". Эйнштейн писал автобиографию по-немецки и передает оба поставленные в кавычки слова с помощью одного и того же корня "wunder". Он вспоминает свое удивление в возрасте четырех-пяти лет при виде компаса. Когда представляешь себе Эйнштейна, пораженного движущейся магнитной стрелкой, живо оцениваешь ту свежесть восприятия, ту детскую способность взглянуть на мир как бы в первый раз, без груза традиционных представлений и ассоциаций, которая сохраняется на всю жизнь у подлинных ученых и подлинных художников и превращается в творческую силу гения, по-новому объясняющего или изображающего мир.

Эйнштейн пишет, что магнитная стрелка произвела на него глубокое и длительное впечатление. Оно действительно было впечатлением, переходящим в сферу "надличного". Что, собственно, означает "акт удивления", например впечатление от магнитной стрелки? Из некоторой суммы восприятий было сделано заключение о толчке как причине движения. Далее вступила в игру логика, позволившая вывести отсюда ряд других предложений и понятий. Но логическая строгость их выведения не гарантирует универсальной истинности всего ряда логических конструкций. Она не гарантирует истинности исходных посылок. Такая истинность означает, что понятие толчка как причины движения соответствует большому числу непосредственных восприятий. Компас заставляет строить другую серию логических конструкций, поскольку он вступил в конфликт со старой.

"В тех случаях, когда такой конфликт переживается остро и интенсивно, он в свою очередь оказывает сильное влияние на наш умственный мир. Развитие этого умственного мира представляет в известном смысле преодоление чувства удивления - непрерывное бегство от "удивительного", от "чуда"" [4].

4 Эйнштейн, 4, 261.

56

Разумеется, такая концепция научного развития направлена против всякого априоризма. Но нас сейчас интересует позитивная сторона концепции. Эйнштейн видел в развивающейся науке "бегство от удивительного", т.е. переход к иным сериям понятий и логических конструкций, которые не противоречат "удивительному", а исходят из него, из новых экспериментальных данных. Речь идет не о каком-либо отказе от критерия истинности в отношении логических конструкций. Нет, логические конструкции лишь сами по себе не могут гарантировать и однозначно определить свое онтологическое содержание. Они становятся онтологически содержательными при сопоставлении с наблюдением, с ощущениями, полученными человеком в экспериментах и в практике. Такая онтологическая проверка происходит все время. Без нее логическая непротиворечивость не гарантирует истинности суждений.

"Предложение верно, - пишет Эйнштейн, - если оно выведено внутри некоторой логической системы по принятым правилам. Содержание истины в системе определяется надежностью и полнотой ее соответствия с совокупностью ощущений" [5].

5 Там же, 263.

Если учесть бесконечную сложность мироздания, то отсюда следует, что никакая логическая непротиворечивая и согласованная с рядом наблюдений теория не может быть гарантирована от дальнейших "актов удивления" и перехода к иной теории.

Математика и реальность

Все, что мы знаем о реальности, исходит из опыта и завершается им.

Эйнштейн

Геометрия сохраняет характер математической науки, так как вывод ее теорем из аксиом останется по-прежнему чисто логической задачей; но в то же время она становится и физической наукой, так как ее аксиомы содержат утверждения, относящиеся к объектам природы, утверждения, справедливость которых может быть доказана только опытом.

Эйнштейн

Одной из самых важных эпистемологических предпосылок пут, приведшего Эйнштейна к теории относительности, было его представление о соотношении между математикой и реальностью. Это представление было сформулировано после появления теории относительности, по оно существовало и раньше и было условием появления специальной и особенно общей теории относительности.

В цюрихском Политехникуме Эйнштейн усердно посещал физическую лабораторию. Это увлечение экспериментом очень характерно для юности Эйнштейна и было одним из путей к кристаллизации идей относительности. Вопрос не сводится к ознакомлению с экспериментами, ставшими впоследствии исходным пунктом теории относительности. Экспериментальные увлечения Эйнштейна указывают и па другую сторону дела, тесно связанную с характером его физического и математического мышления.

Речь идет о физической интуиции, предваряющей логические и математические конструкции. Следует расшифровать здесь несколько неопределенное понятие интуиции, которое без расшифровки может ассоциироваться с совсем иным кругом идей. Мы можем судить о механизме научного мышления Эйнштейна, помимо прочего, по одному документу, очень важному для истории и психологии научного творчества в целом и для характеристики

58

психологии творчества Эйнштейна в особенности. В 1945 г. Жак Адамар обратился к ряду математиков с вопросом, какими образами и ассоциациями заполнено их сознание при поисках математических решений. Эйнштейн ответил на этот вопрос следующими замечаниями:

"Слова, так как они пишутся или произносятся, по видимому, не играют какой-либо роли в моем механизме мышления. В качестве элементов мышления выступают более или менее ясные образы и знаки физических реальностей. Эти образы и знаки как бы произвольно порождаются и комбинируются сознанием. Существует, естественно, некоторая связь между этими элементами мышления и соответствующими логическими понятиями. Стремление в конечном счете прийти к ряду логически связанных одно с другим понятий служит эмоциональным базисом достаточно неопределенной игры с упомянутыми выше элементами мышления. Психологически эта комбинационная игра является существенной стороной продуктивного мышления. Ее значение основано прежде всего на некоторой связи между комбинируемыми образами и логическими конструкциями, которые можно представить с помощью слов или символов и таким образом получить возможность сообщить их другим людям" [1].

Но логические конструкции, которые можно выразить словами и математическими символами, - это вторая ступень. Первоначально в сознании нет ничего, кроме возникающих и ассоциирующихся образов физических реальностей. Эти образы приближаются к зрительным и моторным представлениям.

"У меня упомянутые выше элементы мышления - зрительного и некоторого мышечного типа. Слова и другие символы я старательно ищу и нахожу на второй ступени, когда описанная игра ассоциаций уже установилась и может быть по желанию воспроизведена. Как уже сказано, игра с первоначальными элементами мышления нацелена на достижение соответствия с логической связью понятий" [2].

1 Einstein A. Ideas and opinions. London, 1956, p. 25-26.

2 Ibid., p. 26.

59

Зрительные и мышечные элементы, вступающие в ассоциативную игру, по-видимому, были ближе всего к кинетическим и динамическим представлениям. Неопределенный зрительный образ движущегося или меняющего свою форму тела и неопределенное мышечное ощущение действующей силы - таков был, как можно думать, тип исходных элементов, которые мыслитель вызывал в своем сознании, чтобы начать ассоциативную игру. В последней комбинировались, сближались и противопоставлялись образы, иногда близкие физическим реальностям, а иногда игравшие роль условных символов, соответствующих более сложным, в том числе немеханическим, реальностям. Это были образы волнующегося моря, символизирующего, а отчасти описывающего недоступные непосредственному зрительному представлению электромагнитные колебания, образы движущихся градуированных стержней, изображающих системы отсчета, и т.д.

На второй ступени - уже не интуитивной, а логической - мыслитель как бы слышит слова, выражающие понятия, или видит написанными эти слова либо математические символы. У Эйнштейна зрительные и моторные образы первоначальной ассоциативной стадии сменялись слуховыми представлениями слов, передающих логические конструкции. На вопрос Адамара о господствующем типе "внутренних слов" Эйнштейн отвечал:

"Зрительные и моторные. На той ступени, когда полностью вступают слова, они в моем случае чисто слуховые. Но они, как уже сказано, включаются только на второй ступени" [3].

3 Einstein. Ideas and Opinions, p. 25-26.

Описанный механизм мышления был, по-видимому, в наибольшей степени приспособлен для конструирования логических цепей, допускающих экспериментальную проверку.

Для Эйнштейна понятия не связаны непосредственно с наблюдениями и могут не обладать непосредственным физическим смыслом. Физический смысл они подчас приобретают в результате сложного и многоступенчатого конструирования других понятий. Но в конце концов логические выводы становятся сопоставимыми с наблюдениями и это придает физический смысл всей цепи рассуждений. Как уже говорилось, логика сочетается при таком конструировании с интуицией. Последняя как бы предвосхищает на каждом этапе физические выводы конструируе-

60

мой теории. Каждый раз, когда логический анализ оказывается на распутье, физическая интуиция толкает его к таким дальнейшим шагам, которые делают более близкой экспериментальную проверку. Подобно свету, отражающемуся в сложных системах зеркал так, что путь его требует наименьшего времени, мысль Эйнштейна движется от одного понятия к другому по линии кратчайшего подхода к экспериментальной проверке всей цепи рассуждений, к понятиям, которые допускают такую проверку. При этом Эйнштейн руководствуется физической интуицией. Ее можно было бы назвать "экспериментальной интуицией", имея в виду догадку о наиболее близком пути к эксперименту, позволяющему теории обрести физическую содержательность. Интуицию питало то обстоятельство, что Эйнштейн чувствовал себя в своей стихии в мире понятий и образов экспериментальной физики. Зеркала, отражающие свет, контуры, по которым пробегает ток, жесткие стержни, соединяющие движущиеся части приборов, - все эти образы и понятия обрастали у Эйнштейна множеством зрительных и моторных ассоциаций, были живыми, подвижными, готовыми к новым сочетаниям.

Гений Эйнштейна выражался в способности связывать, сочетать, иногда отождествлять понятия, далеко отстоящие одно от другого. В мозгу мыслителя каждое понятие (на предшествующей стадии - образ) окружено облаком виртуальных связей или полем сил, которые захватывают другие понятия, иногда реконструируют их, связывают с данным понятием, вызывают порождения новых понятий и аннигиляцию некоторых старых. Колоссальная мощность такого облака, напряженность такого поля, радиус действия таких сил - признаки гения.

В конце концов экспериментальная интуиция Эйнштейна стала математической интуицией. Мы встречаемся в его работах с поразительно изящными (т.е. приводящими к большому числу выводов без дополнительных допущений) и мощными приемами. В основе выбора этих математических приемов лежит, как мы увидим, выявление закономерностей, допускающих экспериментальную проверку. Но это появилось позже, когда физическая интуиция уже привела Эйнштейна к новому по сравнению с классической физикой разделению понятий

61

на формальные и физически содержательные, допускающие в принципе сопоставление с наблюдениями. До этого, в Цюрихе, у Эйнштейна не было критериев для выбора той или иной математической дисциплины или проблемы.

"Я видел, - пишет Эйнштейн, - что математика делится на множество специальных областей, и каждая из них может занять всю отпущенную нам короткую жизнь. И я увидел себя в положении Буриданова осла, который не может решить, какую же ему взять охапку сена. Дело было, очевидно, в том, что моя интуиция в области математики была недостаточно сильна, чтобы уверенно отличить основное и важное от остальной учености, без которой еще можно обойтись. Кроме того, и интерес к исследованию природы, несомненно, был сильнее; мне, как студенту, не было еще ясно, что доступ к более глубоким принципиальным проблемам в физике требует тончайших математических методов. Это стало выясняться лишь постепенно, после многих лет самостоятельной научной работы. Конечно, и физика была разделена на специальные области, и каждая из них могла поглотить короткую трудовую жизнь, так и не удовлетворив жажды более глубокого познания. Огромное количество недостаточно увязанных эмпирических фактов действовало и здесь подавляюще. Но здесь я скоро научился выискивать то, что может повести в глубину, и отбрасывать все остальное, все то, что перегружает ум и отвлекает от существенного" [4].

4 Эйнштейн, 4, 264.

Существенным, с точки зрения Эйнштейна, было то, что может послужить материалом или орудием для построения адекватной картины реального мира. В математике подобного критерия у него еще не было. Но уже было неясное, но глубокое представление о том, что в стройной системе геометрических теорем выражается упорядоченность мироздания. Первоначально это представление было элементарным: Эйнштейн думал, что геометрические объекты - псевдонимы реальных тел, что они по своей природе не отличаются от последних. Эйнштейну показалась удивительной ("чудом") возможность чисто логического получения достоверных сведений о наблюдаемых предметах. Позже он понял, что такая возможность исключена.

62

"Хотя это выглядело так, будто путем чистого размышления можно получить достоверные сведения о наблюдаемых предметах, но такое "чудо" было основано на ошибках. Все же тому, кто испытывает это "чудо" в первый раз, кажется удивительным самый факт, что человек способен достигнуть такой степени надежности и чистоты в отвлеченном мышлении, какую нам впервые показали греки в геометрии" [5].

5 Эйнштейн, 4, 262.

Ошибка состояла в следующем. Эйнштейну показалось, что ряд геометрических теорем не требует доказательства, поскольку эти теоремы сводятся к очевидным положениям. Из этих очевидных положений можно вывести другие, уже не очевидные и таким образом получить достоверные сведения о реальных телах без каких-либо наблюдений, чисто логически. Но "очевидность" теорем была основана на том, что фигурирующим в них понятиям приписываются те же связи, которые наблюдаются в природе между реальными телами. Если длина отрезка - это твердый стержень, то все геометрические утверждения, относящиеся к длине отрезка, будут очевидными - пока им соответствуют физические свойства стержня. Мы считаем длину отрезка неизменной при его переносе и склонны рассматривать это утверждение как очевидное, потому что бессознательно сопоставляем геометрические понятия с их физическими прообразами. Но у геометрического понятия может появиться новый физический прообраз. Так и получилось, когда Эйнштейн пришел к теории относительности.

Мы уже знаем, что, согласно Эйнштейну, развитие науки - это не только бегство от "чуда", но и бегство от "очевидности". Наука лишает геометрические построения "очевидности", когда эксперимент обнаруживает неточность наблюдений, придававших геометрическим построениям, казалось, непоколебимую физическую содержательность. Это бегство от очевидности. Но наука каждый раз устанавливает соответствие между новыми наблюдениями и цепями логических конструкций. Первые при этом перестают быть чудом, а вторые обретают физический смысл, который нельзя обрести чисто логическим путем.

63

Соотношение между геометрией и реальностью представляет собой одну из сторон соотношения между логическими и эмпирическими элементами науки. Такому соотношению посвящены многочисленные эпистемологические выступления Эйнштейна. Они очень тесно связаны с собственно физическими работами. Иногда построения, относящиеся к науке в целом, кажутся лишь несколько обобщенным изложением теории относительности. Иногда физические работы кажутся примерами эпистемологических схем. Представление о стихийном творчестве без сознательных и продуманных гносеологических позиций падает так же быстро, как и представление об априорном характере общих концепций Эйнштейна, при первом же столкновении с действительной структурой его научного наследства.

Остановимся на лекции Эйнштейна "О методе теоретической физики" [6].

6 Эйнштейи, 4, 181-186.

Она начинается несколько неожиданным предупреждением: о методе, которым пользуются физики, следует судить не по их заявлениям, а по плодам их работы. "Тому, кто в этой области что-то открывает, плоды его воображения кажутся столь необходимыми и естественными, что он считает их не мысленными образами, а заданной реальностью. И ему хотелось бы, чтобы и другие считали их таковыми".

Тем не менее Эйнштейн хочет изложить не результаты исследований, а метод, которым с большей или меньшей осознанностью пользуются творцы физических теорий. Задача состоит в сопоставлении теоретических основ науки и данных опыта. "Дело идет о вечной противоположности двух неразделимых элементов нашей области знания: эмпирии и рассуждения".

Классическим образцом чисто рациональной науки, уловившей реальные соотношения, остается античная философия. Это великое торжество разума, которое никогда не потеряет своего ореола.

64

"Мы почитаем древнюю Грецию как колыбель западной науки. Там впервые было создано чудо мысли - логическая система, теоремы которой вытекали друг из друга с такой точностью, что каждое из доказанных ею предложений было абсолютно несомненным: я говорю о геометрии Евклида. Этот замечательный триумф мышления придал человеческому интеллекту уверенность в себе, необходимую для последующей деятельности. Если труд Евклида не смог зажечь ваш юношеский энтузиазм, то вы не рождены быть теоретиком".

Вслед за апофеозом логики у Эйнштейна идет апофеоз эмпирии: "Все, что мы знаем о реальности, исходит из опыта и завершается им". Эта формула - эпиграф настоящей главы - ни в малейшей степени не ограничена замечаниями Эйнштейна о мысли, свободно создающей логические конструкции. Как же сочетается царство эмпирии с царством созидающего разума? "Если опыт - альфа и омега нашего знания, какова тогда роль разума в науке?" - спрашивает Эйнштейн.

Физика, по словам Эйнштейна, должна включать исходные понятия, далее - законы, в которых фигурируют понятия, и, наконец, вытекающие из указанных законов утверждения. Такие утверждения должны соответствовать опыту.

Здесь справедливо точно то же, что и в геометрии Евклида, но там фундаментальные законы называются аксиомами и не возникает требования, чтобы выводы соответствовали какому-либо опыту. Если, однако, евклидову геометрию рассматривают как науку о возможности взаимного расположения реальных твердых тел, т.е. если ее трактуют как физическую науку, не абстрагируясь от ее первоначального эмпирического содержания, то логическое сходство геометрии и теоретической физики становится полным.

С подобной точки зрения - она последовательно и систематически проводилась в физике и в геометрии, начиная с теории относительности Эйнштейна, - геометрия свободно, без оглядки на эксперимент конструирует сложную систему логически безупречных выводов. Но эмпирия - и только она одна - придает этим конструкциям физический смысл. Именно так следует понимать слова Эйнштейна о творческой, конструктивной функции математических понятий и методов в физике и об их способности приблизиться к реальности.

65

"Опыт остается, конечно, единственным критерием возможности применения математических конструкций в физике, но именно в математике содержится действительно творческий принцип. С подобной точки зрения я считаю правильным убеждение древних: чистая мысль способна постичь реальное".

Те же мысли, но в несколько ином аспекте Эйнштейн изложил в статье "Проблема пространства, эфира и поля в физике" [7].

Указанная статья позволяет еще точнее представить взгляды Эйнштейна на соотношение математических и экспериментальных корней физической теории. Эйнштейн сопоставляет, с одной стороны, логический анализ с его высокой достоверностью и полной неспособностью сообщить своим конструкциям физический смысл и, с другой стороны, эмпирические источники знания.

Эйнштейн иллюстрирует соотношение этих составляющих науки следующим примером:

"Некий археолог, принадлежащий цивилизации будущих веков, находит курс евклидовой геометрии без чертежей. Он сможет разобраться в том, как применяются слова: точка, прямая, плоскость в различных теоремах; он поймет, как из одной теоремы выводится другая, и даже сможет сам найти по усвоенным правилам новую теорему. Но теоремы останутся для него игрой слов, ему недоступна операция, которую можно выразить словами "представить себе нечто", применительно к терминам: точка, прямая, плоскость и т.д..."

Что значит "представить себе нечто", когда речь идет о точке, прямой, плоскости? Эйнштейн разъясняет, что подобное представление означает возможность опыта и наблюдения. Археолог, нашедший курс евклидовой геометрии, должен произвести опыты в надежде, что некоторые наблюдения будут соответствовать прочитанным в книге и пока еще бессодержательным словам.

66

В 1926 г. Эйнштейн изложил общую концепцию связи между геометрией и физикой в статье "Неевклидова геометрия и физика" [8]. Здесь схема генезиса новой геометрии и теории относительности обобщена в историческом плане. Наука в своем филогенетическом развитии прошла тот же цикл, что и Эйнштейн в своем индивидуальном развитии. Эйнштейн, разумеется, лишь ретроспективно, после создания теории относительности, мог четко сформулировать общую концепцию логических конструкций и наблюдаемых в природе соотношений. Ретроспективно он мог сформулировать и историческую концепцию перехода от первоначального отождествления геометрических и физических понятий к последующему их разграничению и, наконец, к синтезу. Но нельзя думать, что Эйнштейн просто проецировал в прошлое путь, приведший его к теории относительности. Схема, которую Эйнштейн видел в процессе познания в целом, не была ретроспективно навязана истории науки, она действительно вытекает из исторической картины математики и физики. Знакомство с математическими и физическими идеями в их историческом развитии подготовляло в сознании Эйнштейна генезис той схемы "бегства от чуда" и "бегства от очевидности", которая получила свое отчетливое выражение в связи с теорией относительности.

7 Einstein A. Comment je vois le monde. Paris, 1934, p. 214-233. Далее обозначается: Comment je vois le monde, с указанием страницы.

8 См,: Эйнштейн, 2, 178-182.

Эйнштейн говорит, что в древности геометрия была полуэмпирической наукой, рассматривавшей, например, точку как реальное тело, размеры которого можно игнорировать. "Прямая определялась или с помощью точек, которые можно оптически совместить в направлении взгляда, или же с помощью натянутой нити. Мы имеем, таким образом, дело с понятиями, которые, как это и вообще имеет место с понятиями, не взяты непосредственно из опыта или, другими словами, не обусловлены логически опытом, но все же находятся в прямом соотношении с объектами наших переживаний. Предложения относительно точек, прямых, равенства отрезков и углов были при таком состоянии знания в то же время и предложениями относительно известных переживаний, связанных с предметами природы".

В этой характеристике античного представления о геометрии и реальности Эйнштейн повторяет свою общую эпистемологическую концепцию: понятия не выводятся логически из опыта, но тем не менее всегда сохраняют связь с опытом. Вскоре он снова вернется к этой концепции, применительно к общей характеристике пути, ведущего к геометрическим понятиям от их физических прообразов.

67

Античная геометрия - физическая или полуфизическая наука - эволюционировала, освобождаясь от эмпирических корней. Постепенно выяснилось, что большое число геометрических положений можно вывести из аксиом. Тем самым геометрия стала собственно математической наукой. "Стремление извлечь всю геометрию из смутной сферы эмпирического привело незаметным образом к ошибочному заключению, которое можно уподобить превращению чтимых героев древности в богов", - говорит Эйнштейн. Теперь под "очевидным" стали понимать то, что присуще человеческому разуму и не может быть отринуто без появления логических противоречий. Как же могут быть применены эти логически непротиворечивые, присущие человеческому духу и поэтому "очевидные" аксиомы, в частности геометрические аксиомы, к познанию действительности? И тут, продолжает Эйнштейн, на сцену выходит кантовское учение о пространстве как априорной форме познания.

Эйнштейн не только отвергал кантовский априоризм, но вместе с тем указывал реальные проблемы науки и действительные противоречия, из которых при неправомерном абсолютизировании отдельных сторон, отрезков, витков познания вырастали метафизические заблуждения, в данном случае - мысль об априорной природе пространства. Иллюзия априорности создавалась аксиоматизацией геометрии. Второй источник отрыва геометрических понятий от их прообразов находился в самой физике.

"Согласно ставшему гораздо более тонким взгляду физики на природу твердых тел и света, в природе не существует таких объектов, которые бы по своим свойствам точно соответствовали основным понятиям евклидовой геометрии. Твердое тело не может считаться абсолютно неизменяемым, а луч света точно не воспроизводит ни прямую линию, ни даже вообще какой-либо образ одного измерения. По воззрению современной науки, геометрия, отдельно взятая, не соответствует, строго говоря, вообще никаким опытам, она должна быть приложена к объяснению их совместно с механикой, оптикой и т. п. Сверх того, геометрия должна предшествовать физике, поскольку законы последней не могут быть выражены без помощи геометрии. Поэтому геометрия и должна казаться наукой, логически предшествующей всякому опыту и всякой опытной науке".

68

Объясняя такую аберрацию научной мысли, Эйнштейн снова ссылается на свой исходный тезис: понятия сами по себе, логически не следуют из опыта. Этот тезис был обычным выводом из историко-научных экскурсов Эйнштейна.

В одном из писем Соловину Эйнштейн высказал этот тезис чрезвычайно прозрачным образом и при этом пошел далеко вперед по сравнению со всеми предыдущими формулировками [9].

9 См.: Lettres a Solovine, 129.

"Строго говоря, - пишет Эйнштейн, - нельзя сводить геометрию к "твердым" телам, которые ведь не существуют. Твердые тола нельзя считать бесконечно делимыми. Это нужно учитывать".

Здесь Эйнштейн констатирует, что тела, состоящие из атомов, не могут быть точным прообразом геометрических фигур: вершины их углов не совпадают с точками, грани - с плоскостями и т.д., а с позиций волновой теории света луч по может быть прообразом прямой. Отсюда уже вытекает соблазн считать геометрические понятия условными или априорными, независимыми от результатов физического эксперимента и поэтому незыблемыми. Но Эйнштейн прибавляет еще одно соображение. Оно относится к измерению пространственных расстояний и, в частности, к определению положений тел. Мы пользуемся для этого линейками и совмещаем материальные точки, расстояние между которыми требуется определить, с другими точками, расстояние между которыми уже определено. Но если это материальные точки, то нельзя абсолютно игнорировать воздействие линейки на измеряемое тело. Подобное обстоятельство, как можно думать, имел в виду Эйнштейн в строках, которые следуют за приведенными:

"Аналогичным образом нельзя утверждать, что тела, с помощью которых мы измеряем предметы, не воздействуют на эти предметы. Подобное утверждение не является строгим и само по себе не оправданно".

Это замечание придется потом вспомнить в связи с эйнштейновской позицией в отношении квантовой механики. За ним следует вывод:

69

"Поистине никогда и ни при каких условиях понятия не могут быть логическими производными ощущений. Но дидактические и эвристические цели делают такое представление неизбежным. Мораль: если вовсе не грешить против разума, нельзя вообще ни к чему прийти. Иначе говоря, нельзя построить дом или мост, если не пользоваться строительными лесами, которые, конечно, не являются частью сооружения".

Вывод, несколько неожиданный для последователя великих рационалистов XVII-XVIII вв. Они были твердо убеждены: грешить против разума - значит грешить против истины. Все дело в том, что Эйнштейн был не столько последователем, сколько преемником Декарта и Спинозы. Он знал этих мыслителей, но он также знал Гёте с его "теория, друг мой, сера, но зелено вечное дерево жизни". Эйнштейн знал, что непосредственные впечатления бытия преображаются в абстрактные понятия теории сложным путем, включающим игнорирование некоторых сторон реальности. Высшее выражение "безгрешного" рационализма - всеведущее существо Лапласа, знающее положения и скорости всех частиц Вселенной, для рационалистов XVII в. было будущим их концепции, а для рационалистов XIX-XX вв.- прошлым.

Как бы то ни было, в XIX в. с его установившимися атомистическими представлениями о веществе и волновыми представлениями о свете природа уже не была прикладной геометрией. Отсюда сделали вывод, что геометрия - это не абстрактно выраженная природа, и дошли до априорности геометрии либо до ее условности.

Болезни роста излечиваются дальнейшим ростом. Иллюзии априорности и условности геометрии исчезли с дальнейшим развитием аксиоматизации и с дальнейшим развитием представлений о физических прообразах геометрии.

Прежде всего в геометрии выросли большие, разветвленные системы, которые отличались некоторыми исходными допущениями. Появление различных по исходным постулатам геометрических систем подорвало корни представления об априорной геометрии и априорном понятии пространства. Был поставлен вопрос: какова геометрия действительного мира? Имеет ли этот вопрос смысл? Эйнштейн рассматривает, во-первых, ответ Гельмгольца: понятиям геометрии соответствуют реальные объекты, и геометрические утверждения представляют собой в последнем счете утверждения о реальных телах.

70

Другая точка зрения высказана Пуанкаре: содержание геометрии условно. Эйнштейн присоединяется к ответу Гельмгольца и говорит, что без такой точки зрения практически было бы невозможно подойти к теории относительности.

Как мы увидим позже, теория относительности представляет собой попытку ответить на вопрос, какая геометрия соответствует объективной действительности, описывает действительность наиболее точным образом. Тем самым геометрия теряет характерное для логики и математики в целом безразличие к физической природе своих объектов и к физической истинности своих суждений. "Чистая математика, - писал Бертран Рассел, - целиком состоит из утверждений типа: если некоторое предложение справедливо в отношении данного объекта, то в отношении его справедливо некоторое другое предложение. Существенно здесь, во-первых, игнорирование вопроса, справедливо ли первое предложение, и, во-вторых, игнорирование природы объекта... Математика может быть определена как наука, в которой мы никогда не знаем, о чем говорим, и никогда не знаем, верно ли то, что мы говорим". Это игнорирование онтологической стороны дела теперь становится уже условным. Существуют различные пути для вывода второго предложения из первого, выбор пути зависит от содержания первого предложения и от природы объекта, к которому оно относится. Математика - в данном случае геометрия - обретает онтологическую, физическую содержательность. Для Эйнштейна это значит, что содержание математических суждений должно в принципе допускать экспериментальную проверку.

Мы видим, что концепция Эйнштейна направлена как против априоризма и против представления о чисто условных математических истинах, так и против примитивной идеи тождества геометрических соотношений с "очевидными" и непреложными физическими соотношениями. Логические конструкции пе дают априорных результатов при познании природы, они нуждаются в сопоставлении с экспериментом и в соответствии с ним обретают физическую содержательность. Априорной очевидности не существует. Но и эмпирическая очевидность - иллюзия. Геометрические понятия получают все новое и новое физическое содержание и при этом сами меняются. Все это характеризует путь, которым шел

71

Эйнштейн при создании и развитии теории относительности. Но вместе с тем сказанное характеризует эффект математической и физической подготовки Эйнштейна в юности. Все стало на свое место позже, после построения теории относительности, но строительные материалы заготовлялись раньше.

Чтобы охарактеризовать эти материалы, нужно указать, в каком виде они вошли в постройку, какие математические сведения оказались необходимыми Эйнштейну впоследствии. Повторим несколько систематичнее пояснения математических понятий, уже мелькавших раньше.

Вся совокупность теорем наиболее простой и элементарной геометрии, которую изучают в средней школе, основана па неизменной длине отрезка, переносимого с места на место и измеряемого в различных положениях. На этом следует остановиться, так как понятие неизменной длины отрезка подводит к понятиям, которые впоследствии понадобятся для изложения основ теории относительности.

Длина отрезка прямой - это расстояние между его концами. Мы определяем положение каждой точки через расстояния между нею и другими точками, а расстояния - через положения точек. Положение точки - относительное понятие, оно может быть определенным, если указано, по отношению к каким другим точкам, линиям и поверхностям оно определено. Даже такие, не связанные с количественным измерением определения положения, как "сверху", "снизу", "справа", "впереди", тоже требуют указания на другие точки, линии и поверхности, по отношению к которым данная точка находится "снизу", "впереди" и т.д. Декарт нашел способ, с помощью которого можно количественно определить положение точки в пространстве. Если это пространство - плоскость, то нужно провести через некоторую точку на плоскости - начало отсчета - две взаимно перпендикулярные прямые, затем опустить на эти прямые (они называются осями координат) перпендикуляры из данной точки. Длины этих перпендикуляров - координаты данной точки - определяют ее положение на плоскости. Пространство, в котором положение точки определяется двумя координатами, называется двумерным. Оно не обязательно должно быть плоским и может быть кривой поверхностью, например поверхностью сферы. Такова поверхность Земли, положение на этой поверхности определяется расстоянием от полюса (или от экватора) и от меридиана, принятого за начальный. Здесь в такой координатной системе (системе отсчета) осями служат уже не прямые, а кривые линии.

Чтобы определить положение точки с помощью декартовых координат в трехмерном пространстве, понадобится система, состоящая из трех взаимно перпендикулярных плоскостей. Положение точки определяется тремя координатами - длинами опущенных на эти плоскости перпендикуляров.

Мы можем заменить данную декартову систему координат иной декартовой системой, выбрав новое начало координат или проведя в ином направлении взаимно перпендикулярные оси. Такая замена называется преобразованием координат. Она меняет значения координат, но не меняет длины отрезка. Если нам известны координаты одного конца отрезка и координаты другого конца отрезка, мы можем вычислить его длину. Перейдя к иной системе отсчета, получив новые значения координат концов отрезка и вычислив вновь его длину, мы получим ту же самую величину, что и при измерении положения концов отрезка в старой координатной системе. Длина отрезка принадлежит к числу величин, которые не меняются при преобразовании координат и называются инвариантами таких преобразований.

Когда знакомишься с этими геометрическими понятиями, воображение рисует их физические прообразы. Отрезок представляется нам, например, штангой - двумя металлическими шарами, которые сохраняют между собой одно и то же расстояние - они образуют жесткую механическую систему. Координатные оси на плоскости представляются двумя перпендикулярными прямыми, начерченными на столе, на полу или на земле. Под понятие трехмерной системы отсчета мы подставляем конкретный образ трех бесконечно простирающихся плоскостей - что-то вроде бесконечного пола и двух бесконечных перпендикулярных стенок, прикрепленных к кораблю, на котором мы путешествуем, или к Земле, Солнцу, Сириусу и т.д. Нам кажется, что длина штанги (или размеры и форма другой, более сложной материальной системы) не меняется при измерении координат ее точек в системе корабля, в системе Земли и т.д., т.е. что мы можем взять любую начальную точку отсчета, чтобы описать геометри-

73

ческие свойства реальных тел. Такую равноправность всех точек при выборе начала координат мы называем однородностью окружающего нас пространства. Мы можем теперь сказать, что Коперник, лишивший систему координат, связанную с Землей, ее привилегированного характера, показал однородность мирового пространства. Но при этом мы уже, по существу, утверждаем, что при переходе к иной системе координат (Коперник прикрепил ее к Солнцу) не меняются не только форма и размеры тел, но и их поведение.

Соответственно мы приходим к представлению о равноправности направлений в окружающем нас пространстве - такая равноправность называется изотропностью. Когда древнегреческие мыслители отказались от мысли о падении антиподов с Земли "вниз", т.е. о привилегированном направлении, они, по существу, открыли, что в системе отсчета, где одна из осей направлена "вверх", и в системе отсчета, где эта ось направлена "вниз", не меняются величины, характеризующие не только форму и размеры, но и поведение тел.

Вернемся к геометрическим инвариантам. Как было уже сказано, геометрия, которую проходят в средней школе, основана на допущении: длина отрезка не меняется при его переносе. Эта длина вычисляется с помощью некоторой формулы по заданным координатам концов отрезка. Координаты, как уже говорилось, меняются в зависимости от выбора системы отсчета, но длина отрезка остается неизменной. Она служит инвариантом координатных преобразований. Мы можем представить себе иную формулу, связывающую длину отрезка с координатами его концов. Мы можем изменить и другие основные допущения геометрии и при этом не приходим к противоречиям. Такая возможность избирать различные исходные допущения и не приходить при этом к противоречиям нанесла сильный удар идее априорного пространства.

Кант считал априорными, присущими сознанию, независимыми от опыта соотношения геометрии Евклида. В III в. до н. э. Евклид вывел всю совокупность теорем геометрии из нескольких независимых одна от другой аксиом. Среди последних находился так называемый постулат параллельных, эквивалентный утверждению, что из точки, взятой вне прямой, можно провести только одпу прямую, не пересекающуюся с данной. Из этого постула-

74

та выводится равенство суммы углов треугольника двум прямым углам, параллельность перпендикуляров к одной и той же прямой и ряд других теорем. Из него выводится, в частности, формула, позволяющая найти длину отрезка, если заданы координаты его концов.

В 1826 г. Н. И. Лобачевский доказал, что может существовать иная, неевклидова геометрия, отказывающаяся от постулата параллельных. В геометрии Лобачевского через точку, взятую вне прямой, можно провести бесчисленное множество прямых, не пересекающихся с данной. Сумма углов треугольника в геометрии Лобачевского меньше двух прямых углов, перпендикуляры к прямой расходятся. Длина отрезка определяется в ней по координатам концов иначе, чем в геометрии Евклида.

Тридцать лет спустя Бернгард Риман заменил евклидов постулат параллельных утверждением, что через точку, взятую вне прямой, нельзя провести ни одной прямой, не пересекающей данную прямую. Иначе говоря, в геометрии Римана параллельных прямых нет. В геометрии Римана сумма углов треугольника нe равна двум прямым углам, как в геометрии Евклида, и не меньше их, как в геометрии Лобачевского, а больше двух прямых углов. Перпендикуляры к прямой не параллельны и не расходятся; в геометрии Римана они сходятся. Длина отрезка определяется по координатам его концов иначе, чем в геометрии Евклида, и иначе, чем в геометрии Лобачевского.

Эти парадоксальные утверждения геометрии Лобачевского и геометрии Римана приобретают простой и наглядный смысл, если мы нарисуем геометрические фигуры не на плоскости, а на кривой поверхности. Возьмем поверхность сферы. Роль прямых на плоскости здесь будут играть кратчайшие дуги, примером которых могут служить дуги меридианов на поверхности Земли или дуги экватора. Но каждые два меридиана обязательно пересекутся, следовательно, на поверхности сферы нельзя найти параллельные кратчайшие линии. Перпендикуляры к экватору - ими как раз и являются меридианы - сходятся в полюсе. Нарисовав на поверхности сферы треугольник, образованный дугой экватора и двумя меридианами, т.е. с вершиной в полюсе, мы убедимся, что сумма углов этого треугольника больше двух прямых углов. Длина кратчайшего отрезка на поверхности сферы определяется иначе, иной формулой, чем длина кратчайшего отрезка на плоскости.

75

Можно найти кривую поверхность, па которой, при замене прямых кратчайшими на этой поверхности кривыми, так называемыми геодезическими линиями, все соотношения подчиняются геометрии Лобачевского: через точку, взятую вне такой линии, можно провести множество геодезических линий, не пересекающихся с данной, сумма углов образованного такими линиями треугольника меньше двух прямых углов, перпендикуляры расходятся и т.д.

Можно заменить переход от евклидовой геометрии к неевклидовой геометрии на плоскости - искривлением этой плоскости.

Но как представить себе неевклидову геометрию в пространстве переход от трехмерной евклидовой геометрии к трехмерной неевклидовой геометрии? Зрительного образа искривления трехмерного пространства мы не находим. Но мы можем считать искривлением трехмерного пространства всякий переход от евклидовых геометрических соотношений в этом пространстве к неевклидовым.

Когда Эйнштейн знакомился с евклидовой и неевклидовой геометрией на лекциях по математике в Цюрихе, он не представлял себе, какие именно геометрические понятия позволят найти и описать новую физическую теорию. Только через много лет он увидел, что интересовавшая его с отрочества проблема относительности движения имеет непосредственное отношение к координатным преобразованиям и кривизне пространства.

Для этого необходимо было придать понятию пространства более широкий смысл.

Эйнштейн подошел к трехмерному пространству и к описывающей его свойства трехмерной евклидовой геометрии с критерием физической содержательности. Существуют ли физические процессы, укладывающиеся в соотношения трехмерной евклидовой геометрии? Классическая физика допускала существование таких процессов. Созданная Эйнштейном теория относительности отрицает их возможность. Она приписывает физическую содержательность четырехмерной геометрии.

Критерии выбора научной теории и основы классической физики

Природа в ее простой истине является более великой и прекрасной, чем любое создание человеческих рук, чем все иллюзии сотворенного духа.

Роберт Майер

В автобиографии 1949 г. Эйнштейн пишет о двух критериях выбора научной теории. Первый критерий - "внешнего оправдания": теория должна согласоваться с опытом. Это требование очевидно. Но применение его затрудняется тем обстоятельством, что теория часто может быть сохранена с помощью добавочных предположений. Второй критерий Эйнштейн указывает несколько неопределенным образом. Это "внутреннее совершенство" теории, ее "естественность", отсутствие произвола при выборе данной теории из числа примерно равноценных теорий.

Эйнштейн считает высказанное им положение о критериях лишь намеком на определение и говорит, что не способен сразу, а быть может, вообще не в состоянии заменить намеки более точными формулировками. Впрочем, говорит Эйнштейн, авгуры почти всегда единодушно судят как о "внешнем оправдании" теории, так и о ее "внутреннем совершенстве".

Прежде всего отметим, что указанные критерии в известном смысле едины, что, по существу, оба они выражают одно и то же. Они служат критериями для определения онтологической ценности теории, ее соответствия действительности. Это не значит, что не может быть чисто формальною, эстетического критерия изящества, простоты, общности и т.д. Но у Эйнштейна эти характеристики не обладают самостоятельным значением. Они помогают точнее определить истинность теории.

77

Проведем одну параллель, чтобы пояснить высказанную только что мысль. Некоторая гидростанция своими архитектурными формами и компоновкой создает впечатление стройности, легкости, естественности, изящества. Это впечатление имеет самостоятельную эстетическую ценность. По вместе с тем оно является признаком максимальною соответствия между сооружениями и рельефом местности.

Эйнштейн с его удивительно тонким ощущением гармонии, естественности и, как он говорил, "музыкальности" научной мысли придавал особое значение эстетическому впечатлению, зависящему от "внутреннего совершенства" теории. Для Эйнштейна критерий "внутреннего совершенства" становится критерием выбора однозначной теории, отображающей действительность. Теория, в наибольшей степени обладающая "внутренним совершенством", в наименьшей степени исходит из произвольных предположений, не вытекающих однозначным образом из других. Она в большей степени, чем другие теории, объясняет устройство и развитие мира исходя из единых универсальных закономерностей бытия. Но для Эйнштейна это значит, что теория ближе подходит к объективному ratio Вселенной.

Формально критерий внутреннего совершенства очень близок к критерию математического изящества в том виде, в каком его определял Пуанкаре. Последний называл изящным математическое построение, позволяющее вывести наибольшее число положений из наименьшего числа посылок. Он сравнивал такое построение с античной колоннадой, легко и естественно несущей на себе фронтон. Действительно, в архитектуре (прежде всего в античной) наиболее отчетливо выражается однозначность решения: из большого числа возможных архитектурных форм лишь одна соответствует минимальному числу дополнительных опор, лишь одна решает статическую задачу, минимально дополняя основной замысел сооружения. Она и является самой изящной.

У Эйнштейна критерий внутреннего совершенства шире указанного требования минимального числа дополнительных опор. Такое требование - только одна из компонент внутреннего совершенства. Но суть дела не в этом. У Эйнштейна математическое изящество приобретает гносеологический смысл: изящество теории отражает ее близость к действительному миру.

78

Теория относительности оказалась, как мы увидим, наиболее изящной концепцией из числа концепций, выдвинутых для объяснения электродинамических и оптических фактов. Теоретические построения Эйнштейна отличаются большим изяществом. При изложении теоретической физики Эйнштейн, вслед за Больцманом, советовал "оставить изящество портным и сапожникам". Но этот совет относился к изложению, и "изящество" здесь понималось по-иному. При выборе научной теории из числа многих теорий, соответствующих наблюдениям (наблюдения, согласно Эйнштейну, не определяют теории однозначным образом), сознание действует активно и исходит из критериев внутреннего совершенства, в частности из максимального изящества теории, из минимального числа ее независимых посылок.

Как только Эйнштейн подходит к ответу на вопрос, в чем же ценность изящества, минимального числа независимых посылок и т.д., сразу становится ясной грань между эпистемологическими позициями Эйнштейна и Пуанкаре. Для Пуанкаре критерий изящества последний, изящество отнюдь не рассматривается как некий результат или симптом более глубоких свойств теории. Для Эйнштейна изящество - симптом достоверности, объективной достоверности теории, т.е. свойства, которое вообще не может фигурировать в концепциях априорного или конвенционального происхождения науки.

Теории, исходящие из наименьшего числа посылок, ближе к действительности, потому что мир представляет собой единую систему тел, поведение которых взаимно обусловлено, потому что в мире нет оборванных концов причинной цепи, с которых нужно начинать анализ, нет звеньев, относительно которых нельзя спросить "почему", и приходится их брать как исходные, самостоятельные, независимые. Отсутствие таких звеньев, единство мира, универсальный, всеобъемлющий характер единой цепи причин и следствий - в этом причина онтологической ценности изящных теорий. Они исходят из наименьшего числа независимых постулатов и поэтому ближе других к реальному единству мира, отражают его наиболее адекватным образом. Упорядоченность, регулярность, рациональность, детерминированность мира - его объективные свойства. Они - не априорная рамка познания, в которую укладываются восприятия, а являются объективными закономерностями, что бы об этом ни думали сторонники априорного происхождения научных понятий и законов. Когда теория выводит свои понятия из наименьшего числа исходных закономерностей, она приближается к реальному единству Вселенной.

79

Это реальное единство проявляется в сохранении некоторых соотношений при переходе из одной точки пространства в другую и от одного момента времени к другому. Именно эта неизменность законов бытия, независимость их действия от смещений в пространстве и времени была исходной идеей на пути, приведшем к теории относительности. "Внутреннее совершенство" теории означает ее близость к реальному единству мира. Когда Эйнштейн стремился написать уравнения, выражающие законы бытия и ковариантные (т.е. сохраняющие свою справедливость) при различных смещениях в пространстве и времени, он искал максимальное "внутреннее совершенство" теории, но по существу оно означало максимальное соответствие между теорией и объективным единством, детерминированностью мира, сохранением физических соотношений, закономерной связью, охватывающей всю бесконечную Вселенную.

Критерии "внешнего оправдания" и "внутреннего совершенства" были применены (задолго до того, как они получили эти названия и даже были осознаны в сколько-нибудь четкой форме) к классической механике как основе физики.

Характеризуя состояние физики в те годы, когда он учился, Эйнштейн пишет:

"Несмотря на то, что в отдельных областях она процветала, в принципиальных вещах господствовал догматический застой. В начале (если такое было) бог создал ньютоновы законы движения вместе с необходимыми массами и силами. Этим все и исчерпывается; остальное должно получиться дедуктивным путем, в результате разработки надлежащих математических методов" [1].

1 Эйнштейн, 4, 265.

Речь идет отнюдь не о догматической концепции сводимости всех закономерностей мира к законам ньютоновой механики. XIX столетие разрушило эту концепцию. В теории тепла, в теории электричества и света были найдены специфические закономерности, и никто уже

80

всерьез не думал о лапласовском всеведущем существе, знающем положения и скорости всех частиц во Вселенной, как об идеале познания природы. Догматической была другая мысль. Большинство естествоиспытателей было абсолютно уверено в возможности вывести всю сумму физических знаний из ньютоновых законов и не прийти при этом к каким-либо серьезным противоречиям. Эта мысль о ньютоновой механике как о раз навсегда данной основе физики не была поколеблена теориями XIX в. В конце столетия уже знали, что в сложных проблемах физики простая схема перемещения частиц не дает подлинного истолкования фактов. Поведение большого ансамбля движущихся молекул требует для своего объяснения таких чуждых механике понятий, как вероятность состояний, необратимый переход от менее вероятных состояний к более вероятным и т.д. Но это нисколько не колеблет убеждения, что все сложные формы движения в последнем счете связаны с перемещением тех или иных тел, целиком и с абсолютной точностью подчиняющихся законам Ньютона.

Таким образом, когда Эйнштейн говорит о механике как основе физики, он имеет в виду отнюдь не тот механицизм, который появился в XVII в., достиг наибольшего преобладания в науке в следующем столетии и был разбит великими открытиями XIX столетия. Схема сведения всех закономерностей мира к механике была уже достаточно старомодной в конце столетия, и Эйнштейн имел в виду более широкое и общее понятие "механики как основы физики", имел в виду, что за кулисами сложных закономерностей бытия, не заслоняя их и но вытесняя из картины мира, стоят ньютоновы законы перемещения и взаимодействия частиц.

Электродинамика нанесла этой точке зрения удар, заставивший в конце концов усомниться не только в применимости механического объяснения явлений к электромагнитным процессам, но и в точности самих законов механики, установленных Ньютоном и подтвержденных развитием всей практики и всей науки в течение двух столетий. На этом мы остановимся немного позже. Сейчас коснемся двух идей Ньютона, критика которых была предпосылкой пересмотра ньютоновых законов как основы физики. Первая идея - абсолютное время. Ньютон говорил о едином потоке времени, охватывающем все ми-

81 ,

роздание. Мы можем говорить о событиях, происходящих одновременно в одно и то же мгновение во всем бесконечном пространстве. Это представление об одном и том же мгновении, наступающем во всем мире, о последовательности таких общих для всего мира мгновений - абсолютном времени, протекающем во всем миро, об одновременности отдаленных событий - одно из самых фундаментальных представлений классической физики. Нам кажется, что данное мгновение охватывает всю Вселенную, мы убеждены в этом, и это убеждение кажется, вернее казалось, непреложным и незыблемым, может быть даже априорным.

Эйнштейн подошел к понятию абсолютного времени прежде всего с критерием "внешнего оправдания". Соответствуют ли этой концепции наблюдения?

Понятие времени не априорное и не условное понятие, поэтому оно может встретиться с наблюдениями, которые потребуют пересмотра логически стройной концепции. С другой стороны, понятие времени - не простая запись наблюдений; это понятие проникает в сферу объективных причин явлений; поэтому к нему нужно подойти с нефеноменологическим критерием "внутреннего совершенства". Посмотрим, что могли дать для пересмотра идеи абсолютного времени физические знания, приобретенные Эйнштейном в студенческие годы.

Если понятие абсолютного времени - не априорно-логическое понятие, то ему должны соответствовать некоторые наблюдения, позволяющие проверить его реальность. Процессом, придающим физический смысл понятию абсолютного времени, может быть действие одного тела на другое, если это действие распространяется мгновенно, т.е. с бесконечной скоростью. Воздействие тела на удаленное от пего другое тело может быть самым различным: притяжением, толчком через посредство твердого длинного стержня, световым сигналом (одно тело светится, служит источником света, другое тело освещается, служит экраном). Достаточно, чтобы хоть одпо воздействие на удаленное тело происходило с бесконечной скоростью, и тогда понятие абсолютной одновременности получит физический смысл. Возьмем любой вид мгновенного сигнала: мгновенно переданный через твердый стержень толчок; мгновенно распространяющееся тяготение; звук, донесшийся с бесконечной скоростью; радио-

82

волну, переносящуюся с бесконечной скоростью от радиостанции к приемнику; луч света, дошедший до экрана в то же мгновение, когда зажегся фонарь. В каждом из этих случаев одновременность является физическим понятием, она может быть проверена наблюдением, которое доказывает соответствие этого понятия объективной реальности. Если сигнал передается с бесконечной скоростью, если взаимодействие тел может быть мгновенным, то событие "тело А воздействует на отдаленное от него тело 5" и событие "тело В испытывает воздействие со стороны тела А" представляют собой одновременные события.

Но в природе нет мгновенных сигналов, тела взаимодействуют с конечной скоростью. В природе нет абсолютно жестких стержней, мгновенно передающих толчок, нет мгновенно распространяющегося тяготения, мгновенных звуковых и электромагнитных волн. По мере того как выяснялась конечная скорость сигналов, по мере того как образ мгновенного действия на расстоянии вытеснялся из картины мира, концепция абсолютной одновременности теряла свое "внешнее оправдание". В конце концов она все же достигла соответствия с наблюдениями, но ценой радикальной потери "внутреннего совершенства". После этого концепция абсолютной одновременности и абсолютного времени перестала быть основой картины мира и стала рассматриваться как неточное, приближенное представление. Более подробный рассказ об этом связан с изложением оптических и электродинамических знаний конца XIX в. Мы вскоре коснемся их. До этого можно сказать несколько слов о связи идеи абсолютного времени с трактовкой трехмерной геометрии.

Уже в XVIII в. существовала мысль о мире как о четырехмерном многообразии. В самом деле, все, что мы наблюдаем в природе, происходит не только в пространстве, но и во времени. На моментальной фотографии запечатлено то, что имело место в некоторое мгновение; но в течение непротяженного мгновения ничего не происходит. Каждый знает, что нулевая но своим размерам точка не является реальным телом, как и нулевая по ширине линия и нулевая по толщине поверхность. Но существует ли реально куб с нулевой длительностью существования?

83

Подобные соображения о четырехмерном характере реального мира настолько просты и естественны, что донадобилось время для распространения иного взгляда. Этот иной взгляд опирается на понятие одновременности как физического понятия, т.е. на идею мгновенного дальнодействия. Если на моментальной фотографии изображены два тела, соединенные абсолютно твердым, мгновенно передающим толчок стержнем, или фонарь и экран, на который упал луч света в то же мгновение, когда фонарь зажегся, тогда моментальная фотография изображает нечто реально происходящее.

Мгновенное дальнодействие противоречило казавшемуся более естественным представлению о том, что каждое событие происходит через некоторое время после вызвавшего его другого события. Но множество наблюдений заставляло людей думать, будто они видят то, что происходит в то же мгновение, и даже слышат звук в то мгновение, когда он возник, слышат звук колокола в мгновение, когда он зазвонил.

Последняя из перечисленных здесь иллюзий рассеялась очень давно. Представление о мгновенном распространении света держалось до XVII в. О конечной скорости всех взаимодействий, т.е. любых сигналов, узнали только в XIX в. Вероятно, тот факт, что мы сейчас слышим звук колокола, в который ударили на несколько секунд раньше, казался когда-то "удивительным" не в меньшей степени, чем поразившее Эйнштейна движение стрелки компаса. Еще более "удивительным" казалось, что мы видим звезду, которой давно уже нет в просторах Галактики. "Бегство от удивительного" вплоть до XX в. состояло в разработке такого представления о мире, в котором конечная скорость сигналов уживалась бы с идеей абсолютной одновременности.

Такую возможность можно иллюстрировать схемой, которую впоследствии нарисовал Эйнштейн. Мы отождествляем два мгновения в двух пунктах, расположенных на большом расстоянии, когда в эти пункты приходят сигналы с одной и той же конечной скоростью из источника, находящегося на равных расстояниях от них. Примером может служить система из двух экранов и фонаря, находящегося посередине между ними. Свет достигает этих экранов в одно и то же мгновение. Если мгновение, когда осветился первый экран, и мгновение, когда осветился второй экран, отождествлены, то слова "в то же самое мгновение" уже не лишены физического смысла;

мы можем говорить об одновременности, об одном и том же мгновении в отдаленных пунктах пространства, о едином потоке времени.

Соответственно приобретает физический смысл "моментальная фотография" - пространство, взятое в один и тот же момент времени, - трехмерное, чисто пространственное многообразие. Мы увидим вскоре, что теория, в которой абсолютное время сохранялось и при конечной скорости сигналов, все же не смогла получить "внешнего оправдания". Она была ниспровергнута развитием оптики и электродинамики.

Отметим одну особенность понятия абсолютного времени в классической физике. Слово "относительное" противопоставляется "абсолютному" и означает, что некоторые определения (или, если свойство измерено, величины) имеют физический смысл лишь при указании другого определения. Например, свойство тела находиться слева или справа имеет смысл, если на некоторой поверхности определено направление оси, относительно которой данное тело расположено по правую или по левую сторону. Так же относительно определение "па расстоянии в два метра", требующее указания, от какого тола данное тело находится па расстоянии двух метров. В случае пространственных определении все это хорошо известно, давно вошло в число привычных представлений и в этом смысле стало очевидным. Пространственное положение тела относительно, потому что оно теряет смысл без указания тела отсчета, причем тела отсчета равноправны, внутренние свойства тела выражаются одними и теми же величинами при измерении его положения по отношению к любой системе отсчета.

Напротив, "абсолютное" имеет смысл независимо от сравнения с чем то посторонним, абсолютное определение свойства дается без указания на свойство, принятое за начало отсчета. Абсолютное положение тела в пространстве было вполне наглядным представленном в античной космологии с центром и границами мироздания. Мы увидим, насколько сложным стало понятие абсолютного пространства, когда его начали рассматривать как бесконечное.

85

Казалось бы, абсолютное время - это время, не отнесенное к некоторому произвольно выбранному начальному мгновению (началу суток, началу года, началу летосчисления), а относительное время - это время, прошедшее после того или иного начала отсчета, произвольно выбранного в том смысле, что процесс продолжается, например, в течение года, независимо от того, определяем ли мы его начало и конец от нашей эры или по иному летосчислению. Тогда абсолютным временем мы назвали бы время, отсчитанное от некоторого особого, привилегированного начала отсчета, независимое от выбора равноправных, произвольных начальных дат. Таким было время, отсчитываемое в древности от начала существования мира. Оно соответствует границам Вселенной при определении абсолютного пространства.

Однако понятие абсолютного времени, о котором говорилось выше, совсем иное. Под абсолютным временем понимается отнюдь не время, независимое от временной системы отсчета (от летосчисления и т.д.), а время, независимое от пространственного положения точки, в которой определяется время. Это иной смысл понятия "абсолютное время" по сравнению с другими абсолютными величинами, например с "абсолютным пространством". Когда была разрушена конечная Вселенная Аристотеля, абсолютное пространство было спасено - мы вскоре узнаем, каким образом. Когда рухнули легенды о сотворении мира, с ними исчезло и представление о привилегированном моменте - абсолютном начале отсчета времени. Напротив, общая идея охватывающего все мироздание независимого от каких-либо событий потока времени сохранилась. Для классической физики XVII-XIX вв. характерно представление о независимости этого потока от пространственного положения точек, в которых определяется время. Именно такой смысл вкладывал Эйнштейн в понятие абсолютного времени в своей критике этого понятия.

Теперь мы перейдем к понятию абсолютного пространства. Ньютон исходил из понятия бесконечного пространства. Поэтому абсолютное положение тела в смысле его расстояния от границ мира или от центра уже не могло войти в картину мира, нарисованную в "Математических началах натуральной философии". Здесь появился другой критерий абсолютного пространства: при переходе из одного пространственного пункта в другой меняется ход внутренних процессов в перемещающемся теле. Мы ничего не знаем о границах пространства или о каких-либо

86

абсолютно неподвижных телах, находящихся в пространстве. Положение тела отнесено не к таким границам и не к таким телам, а к самому пространству, к пустоте, в которой находятся тела. Положение, не отнесенное ни к каким телам отсчета, отнесенное к самому бесконечному, безбрежному океану мирового пространства, противоречит зрительной "очевидности": никто не мог видеть и даже представить себе положение тела без каких-либо тел отсчета. В древности такими телами считали абсолютно неподвижную Землю и границы Вселенной. Когда вопрос шел о положении Вселенной и ее центра - Земли, античные мыслители приходили к тяжелым затруднениям и противоречиям. Теперь затруднение появлялось сразу, как только речь заходила об абсолютном положении данного тела. Ньютон вышел из этого затруднения следующим образом.

Античные мыслители исходили из абсолютного положения тела - ориентировки его относительно неподвижной Земли и границ пространства. Отсюда они определяли абсолютное движение - переход тела из одного абсолютного места в другое абсолютное место. Путь Ньютона обратный. Он исходит из абсолютного движения. Абсолютное движение проявляется в изменении хода внутренних процессов в движущемся теле. Такой критерий не требует каких-либо тел отсчета. Из абсолютного движения определяется абсолютное пространство: оно характеризуется тем, что переход системы тел из одной части абсолютного пространства в другую является абсолютным движением, т.е. сопровождается внутренними изменениями в системе.

О каких внутренних изменениях идет речь и какое именно движение сопровождается внутренними изменениями?

Речь идет о силах инерции, нарушающих нормальный ход механических процессов в движущейся с ускорением системе и изменяющих поведение входящих в систему тел. Если система переходит из одной части пространства в другую с ускорением, то входящие в систему тела ведут себя иначе, чем при покое системы или при ее равномерном и прямолинейном движении. В системах, движущихся без ускорения, т.е. инерциальных системах, неподвижное тело остается неподвижным; предоставленное самому себе равномерно движущееся тело продолжает свое дви-

87

жение с неизменной скоростью; находясь под действием силы, тело движется с ускорением, пропорциональным силе. Но в системах, движущихся с ускорением, все это меняется; тела, предоставленные самим себе, ведут себя так, как будто получили толчок, как будто к ним приложены силы. Эти силы получили название сил инерции. Вообще говоря, в классической механике силы обязаны своим существованием взаимодействиям тел. Силы инерции не связаны с таким взаимодействием, они вызваны ускорением системы, они-то и служат доказательством абсолютного характера ускоренного движения системы.

Подобные силы в качестве критерия абсолютного движения фигурируют в повседневном опыте. Примером относительного движения служит плавное, равномерное движение поезда, когда нельзя сказать, движется ли поезд относительно стоящего рядом другого поезда или последний движется в обратную сторону. Когда поезд ускорит или затормозит свой ход, толчок, полученный пассажиром, нарушит эквивалентность этих двух представлений и докажет, что именно данный поезд движется. Если бы не было никаких тел отсчета, силы инерции позволили бы говорить о движении системы, зарегистрировать его абсолютный характер, придать физический смысл понятию абсолютного движения, не отнесенного к телам, отнесенного к самому пространству.

От таких наблюдений и выводов по отличается знаменитый пример вращающегося ведра с водой, приведенный Ньютоном в "Началах" для доказательства существования абсолютного движения и абсолютного пространства. Ньютон предлагает повесить на веревке ведро с водой и придать ведру быстрое вращение. Вода под воздействием центробежных сил поднимется к краям ведра.

С точки зрения относительности движения вращение ведра относительно Земли, небосвода и т.д. и вращение мироздания вокруг ведра должны давать один и тот же физический эффект, и констатации "ведро вращается относительно мира" и "мир вращается относительно ведра" описывают один и тот же процесс. Но центробежные силы и вообще силы инерции нарушают эквивалентность этих двух предложений. Про вращении мира вокруг ведра поверхность воды не изменится, при вращении ведра вода поднимается к краям. Следовательно, вращение ведра с водой имеет абсолютный характер,

88

Что означает эквивалентность приведенных двух констатации? Мы берем систему координат, т.е. координатные оси, в которых Земля неподвижна, а ведро вращается. Затем мы берем координатную систему, связанную с ведром, т.е. систему отсчета, которая вращается с ведром или, лучше сказать, в которой ведро неподвижно, а мир вращается. Переход от одного представления (вращающееся ведро) к другому (вращающийся мир) - это переход от одной системы координат к другой. Дает ли такой переход, т.е. переход от движущегося к покоящемуся или от покоящегося к движущемуся ведру, какие-либо внутренние аффекты? При таком переходе поведение тел (частиц воды) меняется. Это и является признаком абсолютного движения. В самом деле, можем ли мы в случае ускоренного движения с одним и тем же правом считать: 1) данную систему движущейся, а другую - неподвижной или 2) другую систему движущейся, а данную - неподвижной? Не изменится ли при таком переходе картина внутреннего состояния системы, не докажет ли подобное изменение, что фраза "система А движется с ускорением относительно системы В" и фраза "система В движется с ускорением относительно системы А" описывают различные ситуации? Остаются ли инвариантными по отношению к координатным преобразованиям величины, характеризующие внутреннее состояние ускоренных систем?

Как мы видели, механика Ньютона дает на эти вопросы иной ответ по сравнению с ответом на аналогичные вопросы в случае систем, движущихся без ускорения. Появление сил инерции в случае ускоренного движения системы А и их отсутствие в случае покоя или равномерного движения этой системы показывает, что система А движется с ускорением абсолютным образом не только но отношению к В (что можно было бы выразить как движение В относительно А), но и по отношению к чему-то абсолютно неподвижному. Соответственно можно утверждать, что система В, где нет сил инерции, не обладает ускорением по отношению к чему-то абсолютно неподвижному. Это "нечто абсолютно неподвижное", вызывающее силы инерции в случае ускоренного движения, представляет собой, по мнению Ньютона, пространство - пустое, абсолютное пространство.

89

Рисуя картину движений без ускорения, движений по инерции, мы не сталкиваемся с влиянием или какими бы то ни было доступными наблюдению проявлениями абсолютного пространства. Именно это и хотел доказать Галилей. Он приводит в "Диалоге о двух системах мира" картину событий в каюте равномерно движущегося корабля. В ной все происходит так же, как на неподвижном корабле. В каюте летают бабочки, вода каплет в подставленный сосуд и т.д. Все эти процессы не меняют своего хода, когда корабль движется без ускорения. Обобщением подобных наблюдений был классический принцип относительности инерционного движения.

Отметим попутно, что Эйнштейн подчеркивал неочевидность закона инерции, вернее, сводил его "очевидность" к длительному и привычному характеру наблюдений и понятий, первоначально казавшихся парадоксальными.

Непосредственное наблюдение показывает, что тела, движение которых не поддерживается постоянно действующей силой, останавливаются. Привычная логическая конструкция, восходящая к Аристотелю и распространенная еще в XVII в., рассматривала в качестве естественного круговое движение.

"Знание о прямолинейности движения предоставленного самому себе тела отнюдь не вытекает из опыта, - говорил Эйнштейн. - Наоборот! И круг считался наипростейшей линией движения и часто провозглашался таковой мыслителями прошлого, например Аристотелем" [2].

2 Мошковский, 48.

Понятие инерции появилось отнюдь не в результате "чистого описания" непосредственно наблюдаемых фактов. Напротив, оно было результатом столкновения традиционных наблюдений с общими идеями, стремления к непротиворечивой общей картине мира, внимания к новым наблюдениям, не укладывавшимся в аристотелевскую схему движения.

В XVII в. понятие инерции было во многих отношениях началом новой науки. Прежде всего в нем воплотилась основная идея рационализма XVII в. - освобождение природы от антропоморфных схем. Само понятие "природы" в XVII в. изменило свой смысл. Раньше под этим термином понимали некоторую трансцендентную силу, стоящую за материальным миром и управляющую

им: "Природа - это министр бога", - говорил в XVI в. ля Боэси. Теперь природу отождествили с материальным миром. Тем самым Вселенная оказалась освобожденной от трансцендентных сил. Механическим эквивалентом этой идеи было представление о движении, которое не требует никакой поддерживающей его силы, выходящей за пределы природы. Бэконовское "свободное движение без сверхнатурального толчка" есть единственное реальное движение. Движение тела в данный момент объясняется тем, что тело двигалось в предшествующий момент, а ускорение объясняется воздействием других движущихся тел, т.е. в последнем счете универсальным движением всех тел Вселенной. Свобода от аристотелевского "первого двигателя" выражалась тогда в схеме природы как механизма, в котором нет ничего, кроме действующих друг на друга частей. Бойль говорил, что природа - это "космический механизм" и нет нужды искать метафизическую причину его функционирования, так же как мы не ищем метафизической причины функционирования часов [3]. Выражением такого свободного движения тел и свободного от метафизических причин функционирования природы является сохранение того состояния, которое вытекает из естественных законов самой природы: "Omnis natura est conservatrix sui" [4].

3 Boyle R. Tractatus de ipsa natura. Genevae, 1688, p. 20-22.

4 Ibid., p. 75.

Взгляды Спинозы на сохранение тел и их состояний имеют особое значение для идейных истоков теории Эйнштейна. Классический принцип относительности, однородность пространства и сохранение скорости предоставленного себе тела были для Эйнштейна не просто одной из физических идей XVII в. Они были для него воплощением мировой гармонии, объективным ratio мира, подчиненного всеобщей причинной зависимости и свободного от всяких некаузальных воздействий. Именно поэтому Эйнштейн сосредоточил свои интеллектуальные силы (они оказались гигантскими!) на обобщении указанной идеи. Истоки подобного понимания инерции и относительности инерционного движения идут от Спинозы.

91

Излагая философию Декарта, Спиноза связывает инерцию с сохранением состояния каждой вещи, поскольку она рассматривается как нечто единое [5]. Отсюда следует, что "тело, раз пришедшее в движение, продолжает вечно двигаться, если не задерживается внешними причинами" [6].

Для Спинозы характерна связь понятия инерции (вернее, более общего понятия сохранения состояния) с понятием сохранение самого бытия вещи, ее тождественности самой себе. "Всякая вещь, поскольку от нее зависит, стремится пребывать в своем существовании (бытии)" [7]. Но бытие вещи состоит в длящемся сохранении ее внутренних свойств. Если в качестве вещи фигурирует система тел, то бытие этой системы, ее индивидуальное существование, означает зависимость поведения тел от внутренних взаимодействий.

5 Спиноза Б. Основы философии Декарта, доказанные геометрическим способом, ч. II. Теорема 14. - Избранные произведения. М., 1957, с. 238.

6 Там же, с. 239.

7 Спиноза. Этика, ч. III. Теорема 6. - Там же, с. 463.

В переводе на язык механики это значит, что в системе, движущейся по инерции, сохраняются соотношения между движениями и вызвавшими их взаимодействиями тел. Отсюда следует, что внутренние соотношения в движущейся по инерции системе не могут свидетельствовать о ее движении. Движение состоит только в изменении расстояний от других тел, причем мы с тем же правом можем говорить o движении данной системы относительно этих других тел и о движении этих других тел относительно данной системы.

Выдвинув идею инерции, т.е. движения, не требующего силы и сохраняющегося в качестве неизменного состояния тела, Галилей приписал такому движению относительный смысл. В системе, движущейся по инерции, т.е. без ускорения, сохраняется неизменный ход механических событий, и мы можем судить о движении системы без ускорения и только по изменению ее расстояний от тел отсчета. С таким же правом мы можем приписать данной материальной системе неподвижность, тогда движущимися окажутся другие тела, которые раньше мы принимали за неподвижные. В этом и состоит классический принцип относительности - обобщение наблюдений, аналогичных наблюдениям в каюте корабля, о которых писал Галилей.

92

Принцип относительности Галилея - Ньютона кажется естественной основой классической картины мира, в которой не должно быть ничего, кроме тел, движущихся одно относительно другого и действующих одно на другое. С этой точки зрения выделение систем, движущихся с ускорением, кажется произвольным. Объяснение сил инерции абсолютным движением не вытекает из картины движущихся и взаимодействующих тел. Они, эти силы инерции, объясняются не взаимными отношениями тел, а отношением тела к пространству. Ускорение относительно пустого пространства - источник сил инерции. Эта мысль вводит пустое пространство в число агентов, определяющих ход событий в природе.

С такой точки зрения Мах критиковал ньютоново понятие абсолютного движения ускоренных систем. В противовес ньютоновой концепции сил инерции как доказательства абсолютных ускорений Мах выдвинул принцип: "все в природе объясняется взаимодействием масс". Как мы увидим, Эйнштейн в конце концов перестал считать принцип Маха универсальным; он допустил возможность таких процессов природы, для которых принцип Маха теряет смысл. Идеи Эйнштейна исходили из понятия поля как реальной среды, воздействующей на поведение движущихся в этом поле тел. Оказалось далее, что события, происходящие в поле, не сводятся к взаимодействиям указанных тел. Сейчас уже нельзя, реформируя механику Ньютона, перейти к другой механике, в которой также в основе всего находятся тела и их взаимодействия. По словам Эйнштейна, мысль Маха о том, что силы инерции объясняются взаимодействием масс, "пеявным образом предполагает, однако, что теория, на которой все основано, должна принадлежать тому же общему типу, как и ньютонова механика: основными понятиями в ней должны служить массы и взаимодействия между ними..." [8]. Но когда речь идет о механике Ньютона или о механике того же типа, негативная сторона критики, направленной против ньютоновых абсолютных ускорений, сохраняет свое значение: допустить, что па поведение тел влияют не другие тела, а пустое пространство, в котором они движутся, значит внести в картину мира некоторое чуждое ей, произвольное допущение. Такое допущение противоречило универсальной гармонии и единству мироздания.

8 Эйнштейн, 4, 269.

93

Эйнштейн отрицает воздействие пустого пространства на поведение тел. Их поведение зависит только от взаимодействий масс. Но, как мы сейчас увидим, этот принцип стал у Эйнштейна исходным пунктом концепции, совершенно несовместимой с общими гносеологическими идеями Маха.

Для Маха критика ньютоновой концепции абсолютного ускорения - повод для критики самого понятия объективной реальности. Для Эйнштейна критика понятий абсолютного ускорения и абсолютного пространства служит восстановлению нарушенной этими понятиями рационалистической схемы мироздания как постижимой реальности. Для Эйнштейна абсолюты Ньютона противоречат основному смыслу системы Ньютона, Эйнштейн борется с Ньютоном за Ньютона, против ньютоновских абсолютов, за основное, главное содержание ньютоновой системы.

В целом Ньютон был для Эйнштейна символом борьбы за объективную истину. Самой важной чертой ньютоновой системы является принципиальная возможность выведения из исходных физических принципов заключений, подтверждаемых опытом. Такая возможность прорывает и разбивает все аргументы агностицизма. Если выводы разума совпадают с наблюдениями, значит посылки разума отображают реальность.

В статье "Исаак Ньютон" (1927) Эйнштейн писал о создателе классической механики:

"Думать о нем, значит думать о его творчестве. Такой человек может быть понят, только если представлять его как сцену, на которой разворачивалась борьба за вечную истину. Задолго до Ньютона находились сильные умы, полагавшие, что возможно дать убедительные объяснения явлений, воспринимаемых нашими чувствами, путем чисто логической дедукции из простых физических гипотез. Но Ньютон был первым, кому удалось найти ясно сформулированную основу, из которой с помощью математического мышления можно было логически прийти к количественному согласующемуся с опытом описанию широкой области явлений. Он в действительности мог надеяться, что фундаментальная основа его механики могла бы со временем дать ключ для понимания всех явлений. Так думали его ученики и последователи вплоть до конца XVIII в., причем с гораздо большей уверенностью, чем сам Ньютон" [9].

94

У Ньютона некоторые явления не были связаны с исходным постулатом - утверждением о зависимости процессов природы от взаимодействия масс. Теория относительности была примирением всей совокупности явлений с этим постулатом. Впоследствии оказалось, что теория относительности прорывает его рамки. Но все это не колеблет основного: совпадение выводов из ньютоновой механики с наблюдениями доказывает способность разума к адекватному познанию мира. Это познание не бывает окончательным, оно бесконечно развивается, но при этом приближается к объективной истине. Поэтому Эйнштейн начинает свою статью о Ньютоне апологией разума и, что крайне характерно для мировоззрения Эйнштейна, социологическими и моральными выводами из могущества разума.

"Несомненно, что разум кажется нам слабым, когда мы думаем о стоящих перед ним задачах; особенно слабым он кажется, когда мы противопоставляем его безумству и страстям человечества, которые, надо признать, почти полностью руководят судьбами человеческими как в малом, так и в большом. Но творения интеллекта переживают шумную суету поколений и на протяжении веков озаряют мир светом и теплом", - продолжает Эйнштейн. И он призывает человечество обратиться к памяти Ньютона как к доказательству силы разума.

Эта апология разума, столь характерная для философских, социологических и моральных идей Эйнштейна, тесно связана с его позицией по отношению к классической механике. Эйнштейн не стремился погасить осветившее мир солнце ньютоновой мысли. Он хотел освободить это солнце от пятен метафизических абсолютов. Развитие теории относительности заменило светило ньютоновой мысли иными светилами. Непоколебимой осталась основная идея: разум освещает своим светом объективный, гармоничный и познаваемый мир.

9 Эйнштейн, 4, 78.

Броуновское движение

Термодинамика - вто единственная физическая теория общего содержания, относительно которой я убежден, что в рамках применимости ее основных понятий она никогда не будет опровергнута.

Эйнштейн

В 1905 г., непосредственно перед публикацией статьи, содержавшей изложение специальной теории относительности, Эйнштейн закончил серию работ, посвященных классической теории молекулярного движения. Заключительная статья в "Annalen der Physik" давала ответ на вопрос о природе наблюдаемого в микроскоп движения небольших тел, взвешенных в жидкости, - так называемого броуновского движения.

Термодинамические исследования Эйнштейна, и в частности теория броуновского движения, имеют самостоятельный интерес. Но в научной биографии творца теории относительности их следует рассматривать в связи с лейтмотивом всей жизни Эйнштейна.

Только что мы познакомились с первыми тактами этого лейтмотива. Теории относительности еще нет. Но мы уже начинаем угадывать тенденцию, которая ведет к теории относительности. Эйнштейн ищет максимально общую, максимально естественную ("внутренне совершенную") теорию, описывающую самые основные процессы природы. Указанные процессы лежат за пределами "чистого описания", они образуют внутреннюю каузальную основу явлений. Такими процессами служат относительные перемещения материальных тел и состоящих из них материальных систем. Субстанциальной подосновой явлений природы служит относительное движение тел. Это понятие превращает хаос отдельных фактов в гармоничную картину мироздания.

96

Такая концепция может быть, как мы увидим, согласована со всякой механикой "типа механики Ньютона", т.е. с картиной мира, в которой элементарными процессами признаются движения и взаимодействия тождественных себе тел. Генезис теории относительности связан именно с классическим идеалом науки, в которой исходным понятием служит относительное движение. Генезис теории относительности связан с обобщением, уточнением такого идеала, с освобождением от всего того, что ему противоречило в исторически сложившихся классических теориях физики.

В термодинамике к классическому идеалу приближались модели кинетической теории газов - представления о движениях и соударениях молекул как о субстанциальной основе тепловых явлений. Но эти модели сделали возможным действительное объяснение только в сочетании с макроскопическими законами, определяющими ход процессов, в которых отдельные молекулы и их движения уже не учитываются. В числе таких макроскопических законов - закон перехода тепла от тела к телу.

В своих "Размышлениях о движущей силе огня" Сади Карно выдвинул принцип необратимости: тепло переходит от теплого тела к холодному, но обратно, от холодного тела к теплому, оно само по себе, без затраты энергии со стороны, не может перейти. Такой необратимый переход теплоты служит характерным примером термодинамических процессов, заставивших науку XIX в. далеко отойти от механицизма предшествующего столетия. Может ли точная регистрация положений, скоростей и ускорений молекул объяснить необратимость перехода тепла от горячего тела к холодному? Так же мало, как сколь угодно точная регистрация положений частиц воздуха в каждый момент может объяснить содержание произносимых речей, которые все же не всегда сводятся к акустическим эффектам волнообразных движений частиц воздуха. Не нужно знать координаты и скорости всех частиц металла, из которых состоит стержень, чтобы объяснить, почему теплота распространяется в определенном направлении - от горячего конца стержня к холодному. Законы механики (которым подчинены столкновения молекул, их движения от одного столкновения до другого - вообще микроскопическая картина) не знают необратимости.

97

Кинетическая теория тепла рассматривает его как результат беспорядочных движений и столкновений молекул. Каждое столкновение описывается исчерпывающим образом в терминах механики. Но чтобы перейти к термодинамическим законам (которым подчинено поведение больших множеств молекул, т.е. макроскопические процессы), нужно отказаться от прослеживания индивидуальных судеб отдельных молекул. Макроскопические закономерности термодинамики - вероятностные, статистические законы; они исходят из вероятности той или иной судьбы молекул, а действительность следует за вероятностью только тогда, когда перед нами большое число индивидуальных судеб. Если взять классический пример теории вероятности - выпадение "герба" и "решки" при бросании монеты, то примерно равные числа выпадений того и другого (соответствующие равенству вероятностей выпадения при каждом бросании) получатся при сотне или тысяче бросаний. Если бросать монету десять раз, такой реализации равенства вероятностей не получится, монета может падать десять раз подряд "горбом" кверху - никакой закономерности тут не обнаружится. Таким же образом не определено никакой термодинамической закономерностью поведение десятка молекул. Они могут обладать самыми различными скоростями, а в следующий момент другими, и никакого закономерного перехода мы тут не обнаружим. Но когда перед нами очень большое число беспорядочно движущихся молекул, мы твердо знаем, что распределение их скоростей с течением времени будет все больше соответствовать вероятности. В металлическом стержне, который никто в данный момент не подогревает, наиболее вероятной будет одинаковая средняя скорость молекул, т.е. одинаковая температура по всей длине стержня. Если стержень нагрет с одного конца и средняя скорость молекул тут больше, то с течением времени температура выравняется. Это макроскопическая закономерность, свойственная лишь большому числу молекул.

Существование макроскопических закономерностей термодинамики, которые отличаются от чисто механических закономерностей поведения отдельных молекул, доставило перед наукой ряд принципиальных вопросов. В каком отношении находится макроскопическая термодинамика к механике молекул? Аналогичный вопрос можно поставить для макроскопических статистических закономерностей биологии, т.е. для закономерностей развития вида, и закономерностей, определяющих в каждом отдельном случае судьбу данной особи.

Очевидно, сложные макроскопические закономерности не сводятся к микроскопическим закономерностям. Мы не поймем необратимого перехода тепла от одного тела к другому и его распространения в данном теле, не поймем хода макроскопических термодинамических процессов вообще, если ограничимся законами механики и попытаемся непосредственно свести к ним более сложные, чем простое перемещение, ряды явлений. В этом смысле термодинамика указывает некоторые границы объяснения природы с позиций ньютоновой механики. Границы эти можно перейти, если включить в систему понятий, служащих для объяснений сложных процессов, некоторые новые понятия, не свойственные механике Ньютона. К числу таких понятий принадлежит, в частности, необратимость. Подобные понятия специфичны для каждого конкретного ряда явлений и создают естественную основу классификации наук, некоторые относительные границы между дисциплинами. Указанные границы являются границами непосредственного применения ньютоновых законов и понятий к другим, помимо механики, разделам естествознания. Мы будем их называть частными границами.

Их существование было открыто в XIX в., что и отличает науку этого столетия от предшествующего. Великие открытия XIX в. показали, что физика с ее статистическими закономерностями и необратимостью не сводится к механике, химия не сводится к физике, биология не сводится к совокупности механических, физических и химических явлений, поскольку сущность органической жизни отнюдь не в механических, молекулярных, химических и тому подобных процессах, без которых, она, впрочем, невозможна. Идея несводимости высших форм движения к более общим и простым была высказана в общем виде Энгельсом в "Диалектике природы". В ней подчеркнут относительный характер несводимости, то обстоятельство, что высшие формы движения неотделимы от низших, что из несводимости отнюдь не следует, "будто каждая из высших форм движения не бывает всегда необходимым образом связана с каким-нибудь действительным механическим (внешним или молекулярным) движением" [1].

1 Маркс К., Энгельс Ф. Соч., т. 20, с. 563.

99

Идея несводимости физических - именно термодинамических - закономерностей к механике и их неотделимости от механики, от перемещения частиц вещества позволяет понять действительные истоки некоторых научно-философских дискуссий конца прошлого века.

Забвение несводимости вело к рецидиву механицизма, забвение неотделимости термодинамических процессов от движения отдельных молекул - к попыткам освободить понятие движения от его материального носителя. Оствальд предложил освободить энергию, фигурирующую в термодинамике, от какой-либо связи с движением молекул и затем вообще потребовал замены понятия материи понятием энергии. К сходным воззрениям пришел и Мах, объявивший "верой" убеждение в существовании атомов вещества.

В 1827 г. Броун наблюдал под микроскопом цветочную пыльцу, плававшую в воде. Отдельные пылинки все время находились в беспорядочном движении. Пылинка каждый раз сдвигается на незначительное, почти неулавливаемое глазом расстояние, и происходит это в течение ничтожного интервала времени. Если фотографировать движущуюся пылинку с очень большой экспозицией, на пластинке получится пятно совершенно случайной размазанной формы - результат многократного попадания пылинки на то же самое место перед объективом аппарата. Если фотографировать пылинку, например, через каждые 30 секунд и соединить получившиеся на пластинке изображения пылинки, т.е. почерневшие точки, мы получим ломаную линию.

После этих предварительных замечаний можно перейти к работам Эйнштейна о броуновском движении и к значению указанных работ.

Эйнштейн объяснил броуновское движение исходя из кинетической теории тепла, из картины беспорядочно движущихся и сталкивающихся молекул. Он учитывал неизбежные флюктуации в беспорядочных ударах, которые наносят телу окружающие молекулы жидкости.

100

Под флюктуацией, как мы знаем, следует понимать нарушение наиболее вероятного распределения различных событий во времени или в пространстве. Когда мы увеличиваем число событий, например бросаем монету десять, сто, тысячу раз и т.д., фактическое распределение событий "решка" и "герб" стремится к наиболее вероятному распределению - к равному числу выпадений "герба" и "решки". Когда мы уменьшаем число событий (число бросаний монеты), мы всё с большим основанием можем ожидать нарушений вероятности, ожидать "невероятного" выпадения "решки" подряд несколько раз и такого же выпадения "герба" подряд. Когда мы совершим двадцать бросаний, одна и та же сторона монеты может выпасть даже все двадцать раз подряд, но это будет очень редким случаем, а когда мы имеем пять бросаний, то аналогичная флюктуация будет сравнительно частой. При беспорядочных движениях молекул число ударов, нанесенных взвешенной в жидкости пылинке с одной стороны, может значительно превысить число ударов с другой стороны. Если пылинка велика, такая флюктуация маловероятна, на пылинку действует очень большое число молекул и их толчки соответствуют наиболее вероятному распределению; толчки в целом уравновешивают друг друга. Но при очень малых размерах пылинки возможны флюктуации, нарушения равновесия, избыток толчков в одну сторону по сравнению с числом толчков в противоположную сторону. Подобная несимметричность воздействий молекул на пылинку в течение очень короткого промежутка времени вызывает сдвиг пылинки, который можно увидеть при помощи микроскопа.

Представим себе большой резервуар с жидкостью, в котором достигнуто наиболее вероятное, равномерное распределение температуры, т.е. скорость частиц в среднем одна и та же во всех частях резервуара. В этом резервуаре нет потоков жидкости, нет никаких длительных нарушений беспорядочного движения молекул. Небольшие, микроскопические нарушения все время происходят. Такие флюктуации становятся заметными, когда мы переходим к очень малым масштабам. Они вызывают "микроскопические" (в самом прямом смысле, видимые лишь под микроскопом) сдвиги пылинок, плавающих в нашем резервуаре.

101

Теперь представим себе, что на эти микроскопические закономерности (чисто механические закономерности движений молекул) накладываются макроскопические закономерности. Мы подогрели жидкость у одного края резервуара.

Наблюдая теперь броуновское движение пылинок, можно обнаружить несимметричность броуновских сдвигов. Сдвиги, соответствующие направлению потоков, вызванных подогревом, будут многочисленнее, чем сдвиги в противоположную сторону. На фотографии мы увидим, что пылинка после большого числа броуновских сдвигов не останется вблизи исходного пункта, а уйдет на некоторое расстояние в направлении увлекшего ее потока жидкости.

Чтобы сделать яснее соотношение между микроскопическими закономерностями кинетической теории, описывающей движения молекул, и термодинамическими закономерностями, определяющими поведение больших, макроскопических масс, мы коснемся не физической, а биологической естественнонаучной теории XIX в. - теории Дарвина. Его теория исходит из индивидуальных судеб отдельных организмов. Эти судьбы определяются в каждом случае чисто случайными с точки зрения судьбы всего вида причинами. Пусть внешняя среда, в которой обитает вид, не меняется; вид достиг максимального соответствия среде. Тогда остаются отдельные, индивидуальные изменения и флюктуации - серии одинаково направленных изменений у различных организмов. Такие флюктуации будут встречаться тем чаще, чем меньшие числа особей мы наблюдаем. Флюктуации не нарушают неподвижности вида в целом, так же как флюктуации, вызывающие броуновское движение, не нарушают равномерности и отсутствия макроскопических потоков в резервуаре, о котором недавно шла речь. Если среда, в которой обитают организмы данного вида, требует изменения видовых признаков, симметрия индивидуальных вариаций и флюктуаций нарушается: изменения, направленные в одну сторону, наследуются, накопляются, приводят к изменениям вида в большей степени, чем вариации, направленные в противоположную сторону. Но эти закономерности отбора действуют только статистически; они как бы накладываются на закономерности индивидуальных судеб, определяют лишь вероятность той или иной судьбы организма, и этой вероятности соответствует действительный ход событий, когда мы переходим к большим множе-

102

ствам организмов - к судьбе вида в целом. Идея подобных статистических макроскопических закономерностей (определяющих в отдельных случаях лишь вероятность некоторого хода событий, вероятность, которая превращается в достоверность лишь в большой массе случаев) - одна из самых центральных идей естествознания XIX в. Она не покушалась на основной образ классического естествознания - движение, которое с полной точностью, для каждого атома, в каждый момент и в каждой точке определено (не вероятность того или иного движения, а само движение) первоначальным импульсом и взаимодействием с другими телами в данный момент. За любыми статистическими закономерностями стоит движение частицы, подчиненное подобным не статистическим, а динамическим закономерностям, описанным в "Началах" Ньютона.

Эйнштейн в своей теории броуновского движения сосредоточил внимание на учете этих динамических, нестатистических (можно сказать, "застатистических" или "субстатистических" - они стоят за кулисами статистических закономерностей термодинамики) закономерностей. Вернее было бы сказать, что Эйнштейн показал средствами статистики, при помощи понятий статистики, существование "застатистических" динамических закономерностей движения отдельных молекул.

Теория относительности показала, что исходные динамические закономерности мира иные, не такие, какими их описал Ньютон в "Началах". Но это не изменило динамического характера закономерностей механики (в отличие от статистических закономерностей термодинамики).

Двадцать лет спустя этот динамический, чуждый понятию вероятности характер законов механики был опрокинут новой революцией в науке. Истоки новой революции содержались во все том же томе "Annalen der Physik" - в статье Эйнштейна о квантах света. Но отношение Эйнштейна к мысли о статистических закономерностях как исходных закономерностях мира было очень сложным. В нем нужно разобраться, иначе нельзя показать гармонию всего творчества Эйнштейна в целом. Здесь пришлось так подробно рассказать о статистических закономерностях термодинамики и включить элементарные пояснения, чтобы потом легче было изложить и

103

разъяснить отношение Эйнштейна к квантово-статистическим закономерностям. Этот вопрос интересует не только физиков. Как подходил величайший физик нашего времени к проблеме основных, исходных закономерностей мира - это вопрос не истории физики, а вопрос всей культурной истории XX столетия.

В юности на Эйнштейна произвела сильное впечатление именно неотделимость закономерностей термодинамики от механики молекул. Термодинамика в глазах Эйнштейна - не отрицание движения частиц, т.е. механики как основы картины мира (так думали Мах и Оствальд), и не область непосредственного господства механических законов (так думали эпигоны механицизма); для Эйнштейна термодинамика является широкой областью опосредствованного применения и подтверждения законов движения дискретных частей материи. Для механицизма XVIII в. и для его эпигонов физические задачи, которые решались при помощи механики, были однотипными. В науке XIX в. эти задачи были разнообразными в смысле сложности, многокрасочности, несводимости одна к другой. Для Эйнштейна подобное разнообразие задач и предметов - доказательство силы и согласия с действительностью той теории, которая в последнем счете, не зачеркивая специфичности частных задач, служит ключом к их решению. "Теория, - пишет Эйнштейн, - производит тем большее впечатление, чем проще ее предпосылки, чем разнообразнее предметы, которые она связывает, и чем шире область ее применения. Отсюда глубокое впечатление, которое произвела на меня классическая термодинамика. Это единственная физическая теория общего содержания, относительно которой я убежден, что в рамках применимости ее основных понятий она никогда не будет опровергнута (к особому сведению принципиальных скептиков)" [2].

2 Эйнштейн, 4, 270.

Что именно в классической термодинамике придает ей такую исключительную устойчивость?

Классические законы, определяющие ускорения, скорости и положения молекул в каждый момент, иначе говоря, законы механики Ньютона, уступили место другим, более точным законам. Незыблемым остается положение о переходе термодинамических систем в достаточно боль-

104

ших пространственных и временных областях из менее вероятных состояний в более вероятные и выведение этой закономерности из большого числа беспорядочных движений отдельных молекул. Могут измениться законы, управляющие этими движениями, но связь сложных необратимых, вероятностных, статистических процессов с движением частиц остается незыблемой.

Теория броуновского движения разбивала иллюзию независимости макроскопических законов от кинетических моделей, в которых фигурируют молекулы. Эйнштейн, рассказывая, как законы броуновского движения и другие открытия в учении о теплоте и молекулярном движении убедили скептиков в реальности атомов, отмечает, что скептицизм Маха и Оствальда вытекал из предвзятой позитивистской схемы.

"Предубеждение этих ученых против атомной теории можно, несомненно, отнести за счет их позитивистской философской установки. Это интересный пример того, как философские предубеждения мешают правильной интерпретации фактов даже ученым со смелым мышлением и с тонкой интуицией" [3].

3 Эйнштейн, 4, 276.

Могут ли, спрашивает Эйнштейн, факты сами по себе без теоретических конструкций привести к научному представлению о действительности? Под теоретической конструкцией подразумеваются те или иные гипотезы о непосредствепно ненаблюдаемых атомах и молекулах и об их движениях. Для Маха подобное вторжение в непосредственно не наблюдаемую область - "метафизика". Для Оствальда задача ограничивается описанием макроскопически наблюдаемых переходов энергии из одной формы в другую без проникновения в закулисный мир движущихся частиц материи. Для Эйнштейна именно в таком проникновении и состоит задача познания физических процессов. Описание непосредственно наблюдаемых фактов (в данном случае - макроскопических процессов) не дает однозначной теории. Непосредственно связанные с эмпирическим материалом понятия вовсе не вытекают однозначным образом из объективной реальности. Их "очевидность" - иллюзия, возникшая от длительного применения.

105

Фотоны

Не являются ли лучи света очень малыми телами, испускаемыми светящимся веществом?

Ньютон

В предыдущей главе говорилось о "классическом идеале" науки, о картине мира, которая может отличаться от ньютоновой по характеру законов, движения тел, но принадлежит к тому же типу: ее исходными понятиями служат относительное движение и взаимодействие частиц и состоящих из них тел. Столкновение механики Ньютона с термодинамикой окончилось благополучно и для механики Ньютона, и для "классического идеала" вообще. Механика Ньютона сохранила свои позиции за кулисами статистических законов термодинамики. Это, впрочем, еще не гарантировало абсолютной точности ньютонового варианта "классического идеала". Следующие столкновения (с электродинамикой!) заставили перейти к иным вариантам.

Теория относительности была освобождением "классического идеала" от противоречий и произвольных допущений, она приносила ему "внешнее оправдание" и "внутреннее совершенство" ценой перехода от ньютонового варианта к новому. Эта схема будет проиллюстрирована при изложении работ Эйнштейна 1905 г. (специальная теория относительности) и 1916 г. (общая теория относительности). Но указанная программа привела и к более радикальному результату. Она поставила под сомнение не только ньютонов вариант "классического идеала", но и самый этот идеал - картину мира, в которой наиболее элементарными понятиями служат перемещение и взаимодействие тождественных себе тел. С таким результатом теории относительности мы столкнемся в связи с работами Эйнштейна в тридцатые - пятидесятые годы.

106

Указанный более радикальный результат - пересмотр "классического идеала" - гораздо явственнее и скорее, чем в теории относительности, наметился при развитии идеи, выдвинутой Эйнштейном также в 1905 г., - идеи квантов света, или фотонов. Первоначально речь шла также о торжестве "классического идеала". Но развитие идей, высказанных Эйнштейном в теории фотонов, в конце концов стало угрожать "классическому идеалу" в целом. Когда же принципы теории относительности и принципы квантовой теории света объединились, картина взаимного перемещения тождественных себе тел потеряла свой титул исходного, наиболее глубокого представления о мире.

В 1900 г. Макс Планк разрешил некоторые, очень тяжелые, противоречия теории излучения, предположив, что энергия электромагнитных волн, т.е. света, излучается и поглощается дискретными, далее неделимыми количествами, квантами.

Эйнштейн в 1905 г. выдвинул теорию, согласно которой свет не только излучается и поглощается, но и состоит из дискретных, далее неделимых порций, квантов света. Они представляют собой частицы, которые движутся в пустоте со скоростью 300 000 километров в секунду. Впоследствии (в двадцатые годы) эти частицы получили название фотонов.

Существование фотонов - квантов света - само по себе не следует из существования неделимых порций излучения и поглощения. Эйнштейн разъяснил соотношение гипотезы фотонов и теории Планка следующим сравнением:

"Если пиво всегда продают в бутылках, содержащих пинту, отсюда вовсе не следует, что пиво состоит из неделимых частей, равных пинте". Филипп Франк развил эту аналогию [1]. Чтобы проверить, состоит ли пиво в бочонке из неделимых далее частей, разольем его из бочонка в некоторое число сосудов, например в десять сосудов. Разливать мы будем пиво совершенно произвольным образом, предоставляя случаю определить, сколько попадет в каждый сосуд. Измерим, сколько пива ока-

107

залось в каждом сосуде, и потом выльем его обратно в бочонок. Повторим такую операцию некоторое большое число раз. Если пиво не состоит из неделимых частей, среднее количество пива в каждом сосуде будет одно и то же для всех этих сосудов. Если же пиво состоит из неделимых частей, между сосудами появятся различия в среднем количестве пива. Представим себе в качестве крайнего случая, что бочонок содержит только одну неделимую порцию пива. Тогда вся эта порция будет вылита каждый раз только в один сосуд и различие между содержимым сосудов будет наибольшим: в одном сосуде окажется все пиво из бочонка, остальные сосуды останутся пустыми. Если бочонок состоит из двух, трех и так далее неделимых порций, отклонения от среднего значения станут все меньше. Таким образом, по величине отклонений от среднего значения, т.е. по величине флюктуаций, можно судить о величине неделимых порций пива.

1 См.: Frank, 72.

Перейдем теперь к изучению электромагнитных волн. Пусть они заполняют ограниченный стенками "бочонок" - некоторый объем пространства, состоящий из отдельных клеток. Можно ли разделить энергию этих волн на сколь угодно большое число частей или мы натолкнемся на неделимые далее "порции"? И если излученное электромагнитное поле дискретно, то какова величина его наименьших "порций"?

На эти вопросы можно ответить, измеряя отклонения количества энергии в клетках от среднего значения - вариации этого количества при переходе от одной клетки к другой. Если минимальные "порции" велики, то и вариации велики; если "порции" малы, то и вариации малы.

Измерения дают следующий результат. В фиолетовом свете (более высокие частоты электромагнитных колебаний), заполняющем некоторый объем, мы встречаемся со сравнительно большими вариациями количеств энергии в различных клетках. В красном свете (менее высокие частоты колебаний) флюктуации количества энергии, т.е. вариации при переходе из одной клетки в другую, меньше. Отсюда следует, что фиолетовый свет (колебания с большей частотой) состоит из более крупных неделимых порций энергии, чем красный свет (колебания с меньшей частотой).

108

По этому можно судить, что "пиво не только продается пинтовыми бутылками, но и состоит из пинтовых порций", - свет состоит из неделимых частиц; он не только поглощается и излучается неделимыми частями, но и в промежутке между излучением и поглощением состоит из неделимых частиц, несущих больше энергии, если частота электромагнитных колебаний больше. Энергия частиц (квантов) света - фотонов - пропорциональна частоте и для определенного (монохроматического) света представляет определенную величину.

Корпускулярная структура света, существование фотонов демонстрируется самым непреложным образом в ряде экспериментов. Особенно отчетливо и убедительно существование фотонов выводится из явлений фотоэлектрического эффекта. Эти явления состоят в появлении электрического тока под действием света. Попадая на металлическую пластинку, свет вырывает из нее электроны, движение этих электронов создает электрический ток.

Представим себе некоторый источник света, т.е. излучатель электромагнитных волн. По мере того как волна расходится во все стороны, плотность энергии на фронте волны уменьшается. Но при этом энергия выбитых с пластинки электронов не уменьшается. Каждый выбитый электрон обладает той же энергией, уменьшается лишь число таких электронов. Пусть излученная энергия как раз такая, какая нужна, чтобы выбить электрон из пластинки. Эксперимент показывает, что в этом случае свет может вырвать электрон из пластинки, т.е. даст фотоэлектрический эффект на большом расстоянии от источника. По замечанию Крамерса, дело происходит так, как будто с корабля в воду прыгнул матрос, а энергия волны, разошедшейся по поверхности моря после всплеска воды, дошла бы до другого края моря и здесь выбросила такого же купающегося матроса на палубу его корабля.

Итак, из теории фотоэлектрического эффекта следует, что энергия, затраченная на освобождение одного электрона, не зависит от расстояния между металлической пластинкой и источником света. Она зависит от частоты электромагнитных колебаний. В каждом случае выбитый электрон получает всю необходимую для его освобождения энергию, по чем дальше расстояние, тем таких электронов меньше. Такая закономерность, заключил Эйнштейн, соответствует картине отдельных частиц, разле-

109

тающихся во все стороны от источника света. Чем дальше от источника, тем меньше в среднем будет таких частиц в единице объема, тем меньше вероятность встречи с частицей света в каждой точке пространства, но если мы встретились с этой частицей, ее энергия одна и та же на любом расстоянии от источника, она зависит только от частоты колебаний. Но о каких, собственно, колебаниях идет речь, если свет состоит из частиц? Здесь мы сталкиваемся с самой тяжелой апорией физики XX в., содержащейся в выдвинутой Эйнштейном теории световых квантов.

Существование электромагнитных волн и волновая природа света не могут быть опровергнуты. Вместе с тем нельзя опровергнуть корпускулярную природу света - тот факт, что свет состоит из фотонов. Необъяснимое противоречие вошло в науку, и лишь через двадцать лет физической мысли удалось найти некоторое объяснение указанного противоречия.

Это противоречие, это парадоксальное соединение волновых и корпускулярных свойств света очень характерно для научных идей Эйнштейна. Эйнштейн ни на минуту не сомневается в том, что свет действительно обладает волновыми и корпускулярными свойствами. Он не хочет обойти парадокс, опрокидывающий и классическое представление о частицах, не обладающих волновыми свойствами, и классическое представление о волнах, которые никак не обладают корпускулярной природой.

В том же томе "Annalen der Physik", где была напечатана статья о световых квантах, было, как нам уже известно, напечатано первое изложение теории относительности Эйнштейна. Там описывалась, быть может, еще более парадоксальная ситуация: свет распространяется с одной и той же скоростью по отношению к телам, которые сами движутся, одно относительно другого. Можно провести дальше идущую аналогию: в обеих теориях, и в теории фотонов и теории относительности, Эйнштейн описывает парадоксальные ситуации в физике отнюдь не как внешний феноменологический результат непарадоксальных процессов. Как мы увидим дальше, существовала теория, выдвинутая Лоренцем и объяснявшая постоянство скорости света как результат лежащих в основе явления непарадоксальных процессов. В квантовой теории также существовала такая тенденция. Планк думал, что

110

свет - чисто волновой процесс без каких-либо корпускулярных свойств, т.е. нечто вполне респектабельное в глазах классической физики, - дает дискретное значение энергии только при поглощении и излучении, в силу некоторого особенного механизма излучения и поглощения света. Здесь имеется известная аналогия между соотношением взглядов Эйнштейна и Лоренца, с одной стороны, и Эйнштейна и Планка, с другой. В обоих случаях Эйнштейна отличало не только содержание выдвинутых им физических идей, но и связанное с этим содержанием удивительное по силе чувство парадоксальности бытия или, что то же самое, достоверности, объективности и субстанциальности парадоксальных выводов, противоречащих и "очевидному" наблюдению, и "очевидной" логике. Теория фотонов с ее парадоксальным соединением исключающих друг друга волновых и корпускулярных свойств света в течение долгого времени не получала признания. В 1912 г. в представлении, подписанном крупнейшими немецкими физиками и в том числе Планком, об избрании Эйнштейна в Прусскую Академию наук говорилось о гипотезе световых квантов как о чем-то требующем извинений: "То, что он в своих рассуждениях иногда выходит за пределы цели, как, например, в своей гипотезе световых квантов, не следует слишком сильно ставить ему в упрек. Ибо, не решившись пойти на риск, нельзя осуществить истинно нового, даже в самом точном естествознании" [2].

2 Успехи физических наук, 1956. 59. вып. 1, с. 127.

Постоянство скорости света

Представим себе двух физиков, у каждого из которых лаборатория, снабженная всеми мыслимыми физическими аппаратами. Лаборатория одного из физиков находится в открытом поле, а лаборатория другого - в вагоне поезда, быстро несущегося в некотором направлении. Принцип относительности утверждает: два физика, применив все аппараты для изучения всех существующих в природе законов - один в неподвижной лаборатории, другой в вагоне, - найдут, что эти законы одни и те же, если вагон движется равномерно и без тряски. Если сказать в более абстрактной форме, то это выглядит так: согласно принципу относительности законы природы не зависит от переносного движения систем отсчета.

Эйнштейн

Эйнштейну было шестнадцать лет, когда он впервые задумался о том, с какой скоростью свет распространяется в различных, движущихся одна относительно другой системах отсчета. Тогда же, в Аарау, и впоследствии, в Цюрихе, за десять лет до создания теории относительности, Эйнштейн, стремясь нагляднее представить движение системы отсчета, мысленно рисовал движущиеся вместе с каким-то телом, прикрепленные к этому телу измерительные стержни, а также часы. Стержни и часы позволяют измерить положение каждого тела в каждое мгновение и определить его скорость. Таким образом, система отсчета рисовалась Эйнштейну в виде реального тела, к которому прикреплено начало координат, бесконечные координатные оси и множество сколь угодно длинных стержней, так что любое тело, где бы оно ни находилось в данный момент, совпадает по своему положению с определенными отметками на измерительных стержнях, т.е. имеет определенные координаты, причем "данный момент" один и тот же в каждой точке, ориентированной при помощи стержней, - мы можем сверить все находящиеся в этих точках часы. Чтобы не смешивать измерения, сделанные по отношению к данной системе отсчета,

112

с другими, отнесенными к иной системе отсчета, Эйнштейн представил себе человека, который движется вместе с системой и не видит никаких других систем. Он наблюдает только, совместились ли тела с отметками на измерительных стержнях данной системы отсчета. Этот "наблюдатель" фигурирует почти во всех изложениях теории относительности, но можно было бы обойтись и без него; он представляет собой столь же воображаемую фигуру, как и координатные оси и измерительные стержни, прибитые к движущемуся тепу и образующие движущуюся вместе с ним систему отсчета (систему отсчета, в которой это тело неподвижно). "Наблюдатели" так же мало затушевывают объективный смысл теории относительности, как выражение "если вы протянете веревку от Земли до Солнца..." ставит объективный факт - определенное расстояние между небесными телами - в зависимость от реальных или воображаемых измерений. Когда воображение рисует "наблюдателя", то появляется несколько неясный образ человека, привязанного к летящим в пространстве измерительным стержням и способного одновременно измерять положения тел при помощи этих бесчисленных и бесконечных по величине стержней. Этот образ может быть заменен менее точным, но более представимым образом пассажира в купе поезда с задернутыми занавесками на окнах или в каюте корабля (этой каютой пользовался, как мы помним, Галилей для демонстрации классического принципа относительности).

Представим себе корабль, движущийся с той же скоростью, что и волны на поверхности моря. Для находящегося на корабле "наблюдателя", т.е. для человека, который может измерить скорости только по отношению к кораблю, волны покажутся неподвижными. Не замечая ни неба, ни берегов, "наблюдатель" увидит как бы застывшую поверхность моря, он ничего не будет знать о движении волн - ведь они неподвижны по отношению к кораблю. Такие субъективные впечатления "наблюдателя" лишь условное выражение объективного факта: волны действительно неподвижны по отношению к системе отсчета, в которой неподвижен корабль (к системе, "привязанной" к кораблю).

113

Эйнштейна заинтересовал вопрос, сохранится ли неподвижность волн по отношению к кораблю (к системе отсчета, "привязанной" к кораблю, и к находящемуся на нем "наблюдателю"), если это будут не волны на водной поверхности, а электромагнитные волны, т.е. свет. Свет пробегает вдоль Земли со скоростью, приблизительно равной 300 000 километров в секунду. Пусть корабль движется по морю с такой же скоростью. Для "наблюдателя" на корабле свет имеет тогда нулевую скорость. Но в этом случае оптические процессы на корабле резко изменятся, например вспышка фонаря не осветит экрана, находящегося на носу корабля. Электромагнитное поле станет аналогичным застывшей поверхности моря, окружающей корабль, оно окажется переменным в пространстве, т.е. в пространство будут чередоваться гребни и впадины, но они не будут сдвигаться с течением времени. Такое изменение оптических процессов позволит "наблюдателю" зарегистрировать абсолютным образом движение системы. Вооруженный оптическими инструментами "наблюдатель" сможет отличить движущийся корабль от неподвижного. Но это противоречит теории Максвелла, в которой свет всегда представляет собой движущиеся электромагнитные волны. Противоречит это и интуитивному убеждению в невозможности зарегистрировать равномерное и прямолинейное движение при помощи внутренних эффектов в движущейся системе.

Об указанном парадоксе, овладевшем его мыслями в шестнадцать лет в Аарау, Эйнштейн говорит:

"Парадокс заключается в следующем. Если бы я стал двигаться вслед за лучом света со скоростью с (скорость света в пустоте), то я должен был бы воспринимать такой луч света как покоящееся, переменное в пространстве электромагнитное поле. Но ничего подобного не существует; это видно как на основании опыта, так и из уравнений Максвелла. Интуитивно мне казалось ясным с самого начала, что с точки зрения такого наблюдателя все должно совершаться по тем же законам, как и для наблюдателя, неподвижного относительно Земли. В самом деле, как же первый наблюдатель может знать или установить, что он находится в состоянии быстрого равномерного движения?" [1]

1 Эйнштейн, 4, 278.

По существу, указанный парадокс является конфликтом между двумя идеями классической механики, перенесенными в новую область электродинамических процессов.

Первая из них представляет собой классическое правило сложения скоростей. Если человек идет по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда он идет по направлению движения поезда, и со скоростью 50-5 = 45 километров в час, когда он идет в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55-50 = 5 километров в час. Если волны движутся относительно берега со скоростью 30 километров в час, а корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30-30 = 0 километров в час, т.е. они остаются неподвижными. Что же произойдет в случае электромагнитных волн? Сохранится ли здесь столь очевидное правило сложения скоростей?

Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущейся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, т.е. можем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разность между их координатами в одной инерциальной системе отсчета - всегда равно их расстоянию в другой инерциальной системе.

Вторая идея - принцип относительности. Находясь на корабле, движущемся равномерно и прямолинейно, нельзя обнаружить его движение какими-либо внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое, электродинамическим эффектам? Интуиция (довольно явным образом связанная с классическим принципом относительности)

115

говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определенной скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантной по отношению к галилеевым преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом, электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми. Непротиворечивая картина мира могла быть только парадоксальной, "безумной", т.е. отказывающейся от привычного и поэтому "очевидного" положения. От какого именно - от правила сложения скоростей или от принципа относительности, - это должен был решить эксперимент.

В 1882 г. Майкельсон произвел решающий эксперимент. Он пользовался прибором, который называется интерферометром и позволяет обнаруживать очень небольшие различия в скорости света. В нем имеются две трубки, по которым пробегают лучи света. Одна трубка была направлена вдоль движения земной поверхности и находящегося на ней прибора, другая трубка находилась в поперечном положении. Движение Земли в мировом эфире должно было сказаться в увеличении скорости света, когда последний проходит по продольной к движению Земли трубке навстречу этому движению, и в уменьшении скорости, когда свет догоняет Землю. Измерить скорость света при прохождении по трубке от одного конца до другого невозможно. Удается измерить время, необходимое свету для движения по трубке туда и обратно. Пусть свет направлен по движению Земли. Тогда он придет к противоположному концу продольной трубки с запозданием, а обратный путь проделает с опережением. Но опережение на обратном пути не полностью компенсирует запоздание, и в целом получается небольшое запоздание. Свет пройдет туда и обратно в продольной трубке за большее время, чем туда и обратно по поперечной трубке. Сравнив скорость света в продольной и поперечной трубках, мы обнаружим это запоздание, если движение Земли оказывает влияние на скорость света относительно Земли.

116

Земля движется в мировом пространстве со скоростью около 30 километров в секунду, и изменение скорости света должно было оказаться величиной, которую интерферометр Майкельсона обязательно обнаружил бы. Однако скорость света оказалась независящей от движения Земли в эфире; опыт дал отрицательный результат. Можно было предположить, что прибор Майкельсона увлекает при своем движении эфир, так что трубка интерферометра и весь прибор в целом не движется относительно эфира. Но такое предположение было опровергнуто другими оптическими экспериментами.

В самом конце прошлого столетия Вильям Томсон говорил, что наука, наконец, вошла в гавань, разрешила все коренные вопросы и может теперь только уточнять детали. Но он упомянул о двух нерешенных проблемах. Одна из них состояла в некоторых затруднениях теории излучения - они-то и привели в 1900 г. Макса Планка к идее квантов. Второй нерешенной проблемой Томсон считал результаты опыта Майкельсона. За вычетом указанных проблем, по его мнению, науке ничто не угрожает и она может считать себя гарантированной от пересмотра своих коренных теоретических устоев. И как это часто бывает, не успели метеорологи объявить о наступлении ясной погоды, как грянул гром. Он грянул именно из тех тучек, о которых говорил Томсон. Результаты опыта Майкельсона и множество аналогичных опытов опрокинули, казалось бы, самые очевидные представления о мире. В 1905 г. инженер бернского патентного бюро заявил, что свет действительно распространяется с одной и той же скоростью относительно всех тел, движущихся с постоянной скоростью одно относительно другого - встречающихся, отстающих одно от другого, перегоняющих одно другое.

Чтобы подчеркнуть всю парадоксальность этого утверждения, нарисуем следующую картину. С палубы быстро движущегося корабля бросаются в воду два человека, плавающие с одной и той же быстротой. Один из них плывет от носа к корме, т.е. навстречу кораблю, другой от кормы к носу, догоняя корабль. Казалось бы, очевидно, что пловцы затратят различное время: тот, кто плывет по воде навстречу кораблю, достигнет кормы скорее, чем вто-

117

рой пловец - носа корабля. И вот вопреки очевидности пловцы проходят этот путь в одно и то же время, т.е. с одной и той же скоростью. Разница в скорости показала бы, что корабль движется. Если такой разницы нет, то о движении корабля можно судить только по изменению его расстояния от берега или от другого корабля, движение его относительно; с тем же правом можно сказать, что берег движется относительно корабля. Свет ведет себя, как эти пловцы. Оптические процессы в теле не дают внутренних критериев движения, не дают основания говорить об абсолютном движении. Свет распространяется с одной и тон же скоростью относительно различных, движущихся одно относительно другого, тел. Мы уже говорили недавно о системах отсчета - воображаемых измерительных стержнях, с помощью которых можно измерить скорость, в частности скорость света. Основную посылку теории относительности Эйнштейна выражают словами "скорость света одна и та же во всех системах отсчета, движущихся одна относительно другой без ускорения".

Мы можем прикрепить систему отсчета к кораблю и считать неподвижными стоящие на палубе предметы; можем прикрепить ее к берегу и зарегистрировать движение этих предметов с уплывающим кораблем; можем прикрепить систему отсчета к Земле, к Солнцу, к Сириусу, и каждый раз у нас получится другая картина покоящихся и движущихся тел во Вселенной. Но переход от одной системы отсчета к другой ничего не меняет в ходе внутренних процессов в теле. В одной системе тело неподвижно, в другой оно движется, по эти определения "неподвижно" и "движется" относительны, они имеют смысл только по отношению к некоторой системе отсчета; движение тела выражается в изменении расстояний от других тел - и только, а покой выражается в неизменности таких расстояний - и только. Внутренних различий, различий в ходе внутренних процессов нет, в том числе нет различий в скорости света.

Так была дискредитирована идея привилегированной абсолютной системы отсчета, убеждение, что в некоторой абсолютной системе отсчета при регистрации движения и при измерении скорости мы получаем "истинные" данные, а в других системах отсчета движение и покой представляют собой лишь кажущиеся состояния. Так была

118

завершена коперниканская революция, отнявшая у Земли ее абсолютную неподвижность, а у системы отсчета, в которой Земля неподвижна, - ее привилегированный характер. Когда Коперник и Галилей показали людям, что движение тел, каким оно представляется при наблюдении с Земли и при измерении в системе отсчета, привязанной к Земле, не имеет абсолютного характера, дальнейшее развитие идеи относительности уже не могло никого поразить. Но ликвидация последней линии укреплений, защищавших абсолютное движение, потребовала признания самой парадоксальной картины, какую только можно представить, - картины движения света с одной и той же скоростью в системах, которые сами движутся одна относительно другой.

Признание парадоксальности новой картины мира - исходный пункт анализа ее воздействия на характер научного мышления. Но парадоксальные утверждения Эйнштейна не вызвали бы такого широкого резонанса, если бы они не были так тесно логически и исторически связаны с "классическим идеалом" и с предыдущими переворотами в науке, освобождавшими ее от антропоцентрических абсолютов.

Убеждение, что человек, прохаживающийся по палубе корабля, движется с различной скоростью относительно этого корабля, относительно встречного корабля, относительно берега и т.д., было незыблемым. Весьма естественным казалось убеждение, что и свет распространяется с различной скоростью в движущихся одна по отношению к другой системах. Но без того чтобы разрушить это убеждение, нельзя было окончательно ликвидировать антропоцентрические призраки в науке и завершить освобождение науки от этих призраков, начатое в новое время Коперником и Галилеем. По сравнению с гелиоцентризмом новая революция против абсолютного движения принесла людям еще более парадоксальные представления. В XVI-XVII вв. движение приписали телу, которое до того считалось неподвижным, но само движение понимали так же, как и раньше. В этом отношении неевклидова геометрия с ее треугольниками, у которых сумма углов не равна двум прямым углам, с перпендикулярами к прямой, расходящимися по мере удаления от нее или сходящимися в некоторой точке, была более парадоксальной. Но здесь речь шла о геометрических теоремах, кото-

119

рые могли казаться и часто казались свободными творениями мысли, выводящей их логически непротиворечивым образом из произвольных, в том числе парадоксальных, допущений. "Безумие" теории Эйнштейна одного порядка с "безумием" неевклидовой геометрии. Даже сейчас трудно представить себе одну и ту же скорость по отношению к движущимся одна относительно другой системам. Не менее трудно было представить себе соотношения неевклидовой геометрии. Но здесь налицо очень существенное различие. Безумный монолог не вызывает удивления. Удивительной будет безумная действительность, отступление от привычного в реальных явлениях и в достоверно отражающих эти явления понятиях. Мысль о произвольных допущениях, которую можно выразить столь частой фразой: "Чего только не придумают!", в случае теории относительности полностью исключена. Она исключена всей суммой экспериментов, лежащих в основе теории относительности. У Эйнштейна речь явно идет не о парадоксальных теоремах, а о парадоксальной реальности. Движение, само движение, противоречит и очевидности в смысле непосредственно наблюдаемого поведения окружающих тел и той, как казалось, априорной, логической, присущей разуму очевидности, которая свойственна геометрическим аксиомам. Эйнштейн отбросил в принципе и первую и вторую "очевидность" - и эмпирическую очевидность наблюдаемых явлений, и априорную очевидность геометрических аксиом.

Но несмотря на свою парадоксальность, теория относительности производит впечатление чего-то глубоко конструктивного, причем завершающего то здание, которое начали строить с самого возникновения современной науки.

Созданная в XVII в. классическая картина мира основана не только на "очевидном" правиле: если тело движется с одной скоростью относительно одной системы, оно должно двигаться с иной скоростью относительно другой системы, движущейся относительно первой. Классическая картина мира рассматривает его как совокупность тел, движущихся одно относительно другого. Эфир, заполняющий мировое пространство, выходит за рамки первоначальной классической картины мира. И теперь мы возвращаемся к ней, правда, пожертвовав для этого "очевидным" правилом сложения скоростей. В этом смысле

120

сама структура теории относительности весьма парадоксальна. С одной стороны, "безумная" идея - движение с постоянной, одной и той же скоростью по отношению к различным движущимся одна относительно другой системам. С другой стороны, устоявшаяся за много веков (начиная с Демокрита!) картина Вселенной, где нет ничего, кроме тел, движущихся одно относительно другого.

По отношению к этой картине классическая физика производила впечатление недостроенного здания. Тела движутся не только одно относительно другого, но и в абсолютном смысле в неподвижном эфире, позволяющем определить скорости тел по отношению к чему-то абсолютно неподвижному, т.е. определить абсолютные скорости тел. Движение в эфире должно воздействовать на скорость распространения света сквозь движущуюся среду, и, таким образом, оптика становится опорой абсолютного движения, которое устранено из мира прямолинейно и равномерно смещающихся материальных тел. Теория Эйнштейна, отказавшись от классического правила сложения скоростей, смогла подчинить принципу относительности все процессы, происходящие в равномерно и прямолинейно движущихся системах. Все эти процессы - не только механические, но и оптические - не изменяются под влиянием движения систем. Движение систем не вызывает каких-либо внутренних эффектов, сводится к изменению взаимного расположения тел в природе.

Близость этого вывода теории Эйнштейна к классическому принципу относительности облегчала ее усвоение и придавала убедительную достоверность этой теории, включая "безумный" тезис о постоянной и неизменной скорости света в движущихся различным образом и смещающихся одна относительно другой системах. Впечатление "достройки" классической картины мира переносило на новую теорию ореол достоверности. Этим ореолом были окружены и правило сложения скоростей, и классический принцип относительности. Задача состояла в том, чтобы определить, подчинятся ли, во-первых, принципу относительности и, во-вторых, классическому правилу сложения скоростей не только механические, по и оптические процессы. Оказалось, что оптические процессы подчиняются принципу относительности и не подчиняются правилу сложения скоростей. Таким образом, достройка принципа относительности потребовала перестройки классической

121

кинематики, т.е. картины перемещения тел в пространстве. Вскоре оказалось, что такая достройка требует перестройки и классической динамики, т.е. учения о силах и связанных с ними ускорениях. Связь теории относительности с классической физикой состоит не только в достройке классической физики. Когда тела движутся медленно, по сравнению со скоростью света, мы можем рассматривать скорость света как бесконечную. Тогда мы приходим к соотношениям старой, классической механики. Последняя оказывается приближенным описанием действительности. Теория относительности переходит в такую приближенную теорию, когда определенная величина - отношение скорости движущегося тела к скорости света - стремится к нулю или, что то же самое, отношение скорости света к скорости тела стремится к бесконечности. Подобное соотношение между двумя теориями - одна переходит в другую, когда некоторый параметр стремится к нулю или к бесконечности, - существовало в математике. Если на поверхности сферы начертить треугольник, то сумма его углов будет больше двух прямых углов, иначе говоря, здесь будут царить соотношения неевклидовой геометрии. Когда радиус сферы неограниченно растет, эти соотношения неограниченно стремятся к евклидовым, и мы можем сказать, что на поверхности сферы бесконечного радиуса неевклидова геометрия уступает место евклидовой.

Но отсюда еще не следует однозначная физическая теория, переходящая в иную при бесконечном значении некоторого параметра. В физике XIX в. существовало несколько сходное, но все же иное соотношение между теориями. В учении о движении молекул необратимые процессы появляются, когда число молекул становится достаточно большим, и законы необратимых процессов становятся все более точными по мере увеличения этого числа. Но основная проблема учения о теплоте и состоит в связи обратимых процессов в системах с небольшим числом молекул и необратимых процессов в больших статистических ансамблях. Уже это представление о различных теориях, законных, т.е. достаточно точно описывающих действительность, при различных масштабах явлений, ломает схемы Маха и Пуанкаре. Если макроскопические закономерности термодинамики наталкиваются на неожиданные, "удивительные" явления при переходе к

122

молекулярным масштабам, то что остается от априорной, либо условной, трактовки термодинамики? И что остается от представления о "чистом описании", если теория, служившая эталоном такого описания, - термодинамика - переходит в теорию, где фигурируют непосредственно не наблюдаемые молекулы и их движения?

В учении о теплоте различие между макроскопической термодинамикой и механикой молекул не имеет парадоксального характера. Термодинамические законы надстраиваются на законах механики частиц и не колеблют их. Тот факт, что в больших ансамблях действуют статистические законы, не противоречит тому факту, что в мире отдельных молекул действуют абсолютно строгим и точным образом законы ньютоновой механики. В теории относительности появляется иная оценка классической механики. Дело не в том, что объяснение явлений природы не может свестись к решению простых механических задач. Дело в том, что старые законы механики оказываются неточными, строго говоря, всегда неверными. Поэтому здесь уже нельзя говорить о двух равноправных взглядах на физические явления. Здесь речь идет о выборе нового исходного образа картины мира. Вопрос идет не о сводимости или несводимости сложных закономерностей к исходному, самому простому и элементарному закону, а о том, каков именно этот закон. Если он отличается от ранее известного "очевидного" закона, то парадоксальная ситуация не может быть устранена разделом сфер влияния. Вместо равноправных аспектов появляется их иерархия.

В теории относительности учет конечной скорости света и неизменности этой величины во всех инерциальных системах представляет собой более глубокое, общее и точное воззрение. В теории относительности, подчеркнем это еще раз, речь идет о парадоксальности самых глубоких, точных и достоверных законов бытия. Мысль должна переработать не собственные апории, а то достоверное "чудо", которое лежит в основе "надличного" мира. Именно такое соотношение между теорией относительности и ньютоновой механикой позволяет дать обоснование последней, объяснить, почему при определенных значениях скорости движущихся тел наблюдения не противоречат ньютоновой механике. Тем самым все эксперименты И все данные практики, подтверждающие классическую механику Ньютона, становятся подтверждением новой механики Эйнштейна.

123

Ореол достоверности - именно он сделал теорию относительности самой удивительной теорией в истории физики. Впечатление, которое она оказала на широкие круги, объясняется прежде всего тем, что теория была непреложно достоверной и вместе с тем казалась совершенно парадоксальной. Это и вызывало интерес, подчас мучительный и всегда жгучий.

Парадоксы Зенона независимо от их логического анализа всегда считались затруднениями мысли, а не парадоксами бытия; ведь каждый понимал, что Ахиллес догонит черепаху. Парадоксы неевклидовой геометрии стали парадоксами бытия только после теории относительности. Признание достоверной, объективной, реальной парадоксальности самого бытия было связано с философскими концепциями Эйнштейна, работавшими на теорию относительности, т.е. стержневыми концепциями, перераставшими из личного мировоззрения в область идейных предпосылок теории относительности. Для Эйнштейна восприятие парадоксальных явлений - доказательство объективной природы мира, аргумент против априорного происхождения сведений о мире. За восприятиями находится объективная сущность вещей, она-то и раскрывается все больше и больше при последовательном столкновении логических конструкций с восприятиями и при вызванном этими столкновениями развитии конструкции. Классическая физика, достоверным образом описывающая мир, столкнулась с "удивительным", т.е. не укладывающимся в привычную логическую конструкцию фактом постоянства скорости света в различных, движущихся одна относительно другой системах. Привычная логическая конструкция охватывала и концепцию времени, текущего единым потоком во всем бесконечном пространстве, и ряд других фундаментальных основ классической картины мира. И вот Эйнштейн шаг за шагом создает новую универсальную конструкцию. Задача его в основном позитивная. Негативная сторона дела, т.е. разрушение старой картины мира, сводится к тому, что эта старая картина отныне трактуется как менее точное по сравнению с новой приближение к действительности. Каждая из таких картин ограничена определенными условиями, каждая может столкнуться и с течением времени столкнется с "удивительным" и путем "бегства от удивительного" перейдет в более общую и точную картину.

124

Лоренц пытался сохранить существование эфира и отнесенного к нему абсолютного движения, несмотря на результаты опыта Майкельсона. Он хотел объяснить наблюдаемую в интерферометре независимость скорости света от движения Земли, предположив, что все тела при движении относительно эфира сокращаются в своих продольных размерах. Такое сокращение Лоренц выводил из законов электродинамики, считая все тела состоящими из элементарных электрических зарядов. Движение относительно эфира вызывает силы, сдвигающие друг к другу заряды, движущиеся в эфире один за другим в направлении движения тела. Никакие электродинамические явления не требовали для своего объяснения такой гипотезы, и она была введена ad hoc специально для объяснения одного факта - отрицательного результата опыта Майкельсона и аналогичных опытов. Никакие прямые наблюдения не доказывали продольного сокращения тел при их движении в эфире. Но Лоренца это не могло смутить. Ведь линейка, которой мы измеряем в продольном направлении движущееся тело, также движется и также сокращается. Поэтому прямое измерение не может обнаружить лоренцево сокращение.

Гипотеза продольного сокращения объясняет результаты Майкельсона, не затрагивая основ классической механики. Свет распространяется в продольной трубке интерферометра медленнее, чем в поперечной, но продольная трубка сократилась и поэтому свету понадобилось то же время, что и для прохождения по поперечному плечу. Таким образом, постоянство скорости света теряет свой парадоксальный характер. Оно оказывается феноменологическим результатом взаимной компенсации двух чисто классических процессов. Один из них - замедление света благодаря движению интерферометра по отношению к эфиру, благодаря тому, что свет вынужден догонять интерферометр. Второй процесс - сокращение плеча интерферометра ровно настолько, чтобы замедленный луч прошел через трубку интерферометра в течение неизменного интервала времени. Продольное сокращение, о котором говорит Лоренц, такое же классическое явление, как сокращение отсыревшей веревки. Разница состоит в том, что сокращение отсыревшей веревки можно обнаружить

125

при помощи сухой веревки, а лоренцево сокращение нельзя обнаружить, так как в этом случае уже не может быть "сухой веревки" - несокращающегося при движении масштаба. Нетрудно видеть, что гипотеза Лоренца в очень малой степени удовлетворяет требованиям, которые Эйнштейн предъявлял научной теории. Гипотеза сокращения не сталкивается с какими-либо противоречащими ей фактами, но она не обладает "естественностью" и другими критериями "внутреннего совершенства". Именно в этом уязвимое место теории Лоренца. Она выдвинута ad hoc, она не вытекает из широких посылок, опирающихся на большой и разнообразный круг явлений. Тем не менее теория Лоренца давала простор развитию идеи относительности движения. Правда, относительность была в этой теории феноменологической. За внешней, видимой относительностью движения, вытекающей из видимого постоянства скорости света, таилось абсолютное движение, проявлявшееся в различной скорости света в неподвижных и движущихся системах. Но абсолютное движение здесь действительно таится. Если бы можно было прямым измерением обнаружить лоренцево сокращение при движении относительно эфира и отсутствие такого сокращения в неподвижных относительно эфира телах, мы имели бы доказательство абсолютного характера движения. Но обнаружить его нельзя. В теории Лоренца абсолютное движение царствует, но не управляет, царствует за кулисами видимой сцены и не управляет явлениями, доступными наблюдателю. Классическая, исходящая из абсолютного движения теория Лоренца не препятствовала поэтому разработке формального аппарата теории относительности, получению формул преобразования координат, оставлявших неизменной скорость света.

Развитие этого аппарата, установление указанных формул имело место в работах Лоренца и Пуанкаре, опубликованных почти одновременно со статьей Эйнштейна "К электродинамике движущихся тел". Но в этих работах не содержалось новой физической теории, которая стала основой физической картины мира и получила название теории относительности. Решающий пункт генезиса теории относительности - это мысль о субстанциальности относительного движения, о том, что свет действительно движется с одной и той же скоростью в различных, движущихся одна относительно другой системах.

126

Это постоянство скорости света не феноменологический результат компенсации различий в скорости в силу сокращений размеров, как в теории Лоренца.

Тем самым меняется угол зрения на лоренцево сокращение. Уже не может быть речи о какой-то нормальной длине, которая сокращается при движении и сохраняется при абсолютной (отнесенной к эфиру) неподвижности. Сокращение имеет взаимный характер. Возьмем две системы XYZ и X'Y'Z', которые движутся одна относительно другой. Измерим длину стержня, покоящегося в XYZ. Когда мы его измеряем в системе X'Y'Z' (в ней он движется), длина будет меньше, чем при измерении в системе XYZ (в ней он неподвижен). Но если мы возьмем стержень, покоящийся в X'Y'Z', то длина его в системе XYZ сократится по сравнению с длиной, измеренной в X'Y'Z'! Реально ли такое сокращение? Да, реально. Размеры тел действительно сокращаются, и реальной причиной сокращения (взаимного!) служит взаимное движение систем. Конечно, взаимное сокращение движущихся стержней кажется парадоксальным, но именно таково действительное, не зависимое от наблюдения соотношение размеров движущихся тел и зависит оно от реального, взаимного смещения тел, которые легче себе представить, чем абсолютное, не отнесенное к другим телам движение, фигурирующее в классической механике.

Теория Эйнштейна выводит лоренцево сокращение из самых основных и общих понятий науки - из более строгого и точного анализа понятий времени и пространства. Из него Эйнштейн выводит объяснение нового экспериментального факта - результата опыта Майкельсона. В этом смысле теория Эйнштейна укладывается в схему "внешнего оправдания" и "внутреннего совершенства". Когда новый, крайне парадоксальный факт - постоянство скорости света в интерферометре Майкельсона - потребовал какого-то объяснения, Лоренц выдвинул концепцию, согласующуюся с этим фактом и согласующуюся с ранее известными фактами, но не вытекающую из более общего принципа однозначным и естественным образом. Эйнштейн вывел объяснение нового парадоксального факта из перестройки всей картины мира, вытекающей из новой трактовки пространства и времени, т.е. из более глубокой, общей и конкретной интерпретации всей совокупности известных науке фактов. Таким образом, "бегство от чуда" завершилось теорией, сочетающей "внешнее оправдание" с "внутренним совершенством".

127

Именно в такой эпистемологической природе теории относительности и состоит ее отличие от концепций Лоренца и Пуанкаре, появившихся одновременно с ней. В начале 1955 г. Зелиг получил от Эйнштейна следующий ответ на вопрос о независимости его открытия от работ Лоренца и Пуанкаре:

"Если заглянуть в прошлое развития теории относительности, не будет сомнений в том, что в 1905 г. она созрела для своего появления. Лоренц уже знал, что уравнениям Максвелла соответствуют преобразования, названные потом его именем, а Пуанкаре углубил эту идею. Я был знаком с фундаментальной работой Лоренца, вышедшей в 1895 г., но позднейшей работы и связанного с ней исследования Пуанкаре не знал. В этом смысле моя работа была самостоятельной. Новое в ней состояло в следующем. Лоренцевы преобразования выводились здесь не из электродинамики, а из общих соображений..." [2]

2 Seelig, 116.

В этом все дело. Эйнштейн хотел в приведенном письме подчеркнуть подготовленность теории относительности, тот факт, что в статьях, написанных одновременно с его работой "К электродинамике движущихся тел", содержались важные идеи, прокладывавшие дорогу представлению о независимости скорости света от движения инер-циальных систем. Но при всей своей скромности он не мог не сказать главного: преобразования Лоренца (указывавшие на изменение длины стержней и хода часов и на неизменность скорости света) фигурируют в теории Эйнштейна в виде универсального закона, вышедшего за пределы электродинамики, связанного с общим пониманием пространства и времени.

Исходная идея Эйнштейна - необходимость опытной проверки логической конструкции. Понятие не может априорно соответствовать действительности. Оно должно приводить к результатам, допускающим сопоставление с опытом. Абсолютное движение не выдерживает такого испытания. Таким образом, все выводы теории относительности следуют не из специально созданных предположений, а естественно вытекают из общих принципов.

128

"То, что помимо прочего характеризует теорию Oтносительности, - пишет Эйнштейн, - это эпистемологическая точка зрения. В физике нет понятия, применение которого было бы a priori необходимо или оправданно. Понятие завоевывает свое право на существование только своей ясной и однозначной связью с явлениями и соответственно с физическими опытами" [3].

Способность исходить в построении конкретных физических теорий из самых общих, казалось бы решенных, проблем бытия - характерная черта Эйнштейна. Он говорил об этом однажды Джемсу Франку:

"Почему именно я создал теорию относительности? Когда я задаю себе такой вопрос, мне кажется, что причина в следующем. Нормальный взрослый человек вообще не задумывается над проблемой пространства и времени. По его мнению, он уже думал об этой проблеме в детстве. Я же развивался интеллектуально так медленно, что пространство и время занимали мои мысли, когда я стал уже взрослым. Естественно, я мог глубже проникать в проблему, чем ребенок с нормальными наклонностями" [4].

3 Lettres a Soloviue, 21.

4 Seelig, 118-119.

При всей неожиданности такого объяснения (теория, пересматривающая понятия пространства и времени, обязана чуть ли не инфантильности своего творца) оно содержит глубокую и в основе правильную идею. У очень многих детей и юношей интеллектуальный онтогенез в известной мере повторяет развитие человеческой мысли в целом: общие размышления о бытии (вспомним, как герой "Отрочества" пытался проверить, сохраняют ли предметы свое существование, когда он поворачивается к ним спиной) сменяются более зрелыми, но ужо частными интересами. У Эйнштейна сохранилось это ощущение первого взгляда на мир - тайна многих великих мыслителей и художников - без "взрослой" уверенности в том, что коренные проблемы мира уже решены. Такое ощущение не было вытеснено и не потускнело при накоплении специальных знаний и интересов. Он думал о понятии движения и вернулся к идее, свойственной детству человечества, - к античной идее относительности, которую заслонили позднейшие идеи механики и концепция эфира, как абсолютного тела отсчета. Эта идея была положена в основу физики после того, как попытки обнаружить

129

эфирный ветер окончились неудачей. Эйнштейн предположил, что неудача вытекает из субстанциальных оснований, из отсутствия эфира в природе и бессодержательности понятия движения, отнесенного к эфиру. Теперь оставалось сделать все выводы из принципиальной невозможности абсолютного движения, отнесенного к привилегированной системе отсчета. Таким же путем шли создатели термодинамики. Они исходили из неудач при конструировании вечного двигателя, приписали этим неудачам принципиальный характер, предположив, что в природе нет исчезновения энергии и ее возникновения из ничего. После этого термодинамика могла отказаться от искусственных гипотез и систематически развивать выводы из сохранения энергии.

Эйнштейн приложил к одному из писем Морису Соловргау следующее короткое изложение основной идеи теории относительности:

"Несмотря на разнообразие экспериментальных истоков теории относительности, ее метод и содержание могут быть охарактеризованы в нескольких словах. Еще в древности было известно, что движение воспринимается только как относительное. В противоположность такому факту физика базировалась на понятии абсолютного движения. В оптике исходят из мысли об особом, отличающемся от других движении. Таким считали движение в световом эфире. К последнему относятся все движения материальных тел. Таким образом, эфир воплотил понятие абсолютного покоя, связанного с пустотой. Если бы неподвижный, заполняющий все пространство световой эфир действительно существовал, к нему можно было бы отнести движение, которое приобрело бы абсолютный смысл. Такое понятие могло быть основой механики. Попытки обнаружить подобное привилегированное движение в гипотетическом эфире были безуспешными. Тогда вернулись к проблеме движения в эфире, и теория относительности сделала это систематически. Она исходит из предположения об отсутствии привилегированных состояний движения в природе и анализирует выводы из этого предположения. Ее метод аналогичен методу термодинамики; последняя является не чем иным, как систематическим ответом на вопрос: какими должны быть законы природы, чтобы вечный двигатель оказался невозможным" [5].

5 Lettres a Solovine, 19.

Пространство, время, энергия и масса

Принцип относительности в связи с уравненинми Максвелла требует, чтобы масса била пропорциональна содержащейся в теле энергии. Свет уносит массу. Это соображение веселое и подкупающее. Но не смеется ли господь бог над этим и не водит ли он меня за нос - этого я не могу знать.

Эйнштейн

При изложении эйнштейновских критериев выбора научной теории и при анализе отношений Эйнштейна к классической механике уже говорилось о классической концепции абсолютного времени. Это понятие не вытекает из самых общих принципов классической картины мира, из того, что мы называли "классическим идеалом" пауки. В "классическом идеале" наука рисует картину мира, где нет ничего, кроме тел, движущихся одно по отношению к другому. Под движением подразумевается изменение положения тела относительно других тел с течением времени. "Течение времени", т.е. переход от одного мгновения к другому, представляется обязательным: классическая паука не ограничивала скорости тел, но бесконечная скорость тел в ней не фигурировала; напротив, казалось естественным, что тело, находящееся в данный момент в одном месте, не может быть в тот же момент в другом месте. Поэтому в "классическом идеале" паука рисует мир в четырехмерном аспекте: если речь идет о теле и характеризуется его положение, т.е. указываются три пространственные координаты, то вместе с ними указывается и время, когда тело достигло такого положения. Предполагается, что тело, вообще говоря, пе находится в покое и, во всяком случае, покоящееся тело не участвует в каких-либо событиях. Это классическое четырехмерное представление было нарушено понятием силы, распространяющейся с бесконечной скоростью. Постулат мгновенного дальнодействия не вытекал из более общих основ классической науки, противоречил ее "внутреннему совершенству", оставался произвольным дополнением к "классическому идеалу", нарушал естественную гармонию мироздания.

131

Восстановление гармонии было "надличным" стремлением Эйнштейна, определявшим всю его жизнь и все творчество. В данном случае задача была осложнена идеей эфира. Эфир, по выражению Планка, "дитя классической науки, зачатое во скорби", стал опорой понятия одновременности и распада четырехмерного "классического идеала" на самостоятельное время (его поток охватывает все пространство и не зависит от пространственных отсчетов) и самостоятельное пространство (в нем происходят события в течение непротяженного мгновения, в нулевое время). Мы видели, что регистрация событий, происшедших в одно и то же мгновение, может иметь место даже при конечной скорости сигналов, если существует неподвижный эфир как абсолютное тело отсчета для всех тел. Два сигнала из одного источника приходят в два пункта одновременно, если источник находится на равных расстояниях от этих двух пунктов и если сигналы передаются с одной и той же скоростью. Лучи света одновременно попадают на экраны, установленные на носу и на корме корабля, если они исходят из фонаря, зажженного посередине между носом и кормой. Если существует мировой эфир и движение корабля сказывается на скорости световых сигналов, то описанная синхронизация событий (попаданий света на экраны) возможна, пока корабль недвижен по отношению к эфиру. Представим себе другой корабль, который прошел рядом с первым в момент, когда зажегся фонарь. На втором корабле тоже есть экраны, но свет попал на них не одновременно, он должен был догонять экран на носу, а экран на корме шел навстречу свету (разумеется, если есть эфир, если второй корабль движется в эфире и если это движение сказывается в скорости световых сигналов на корабле). На первом корабле знают, что одновременность попаданий света имеет абсолютный характер, ведь их корабль неподвижен в эфире, неподвижен в абсолютном смысле. Пассажиры второго движущегося корабля не смогут с ними спорить, они знают, что неодновременное освещение их экранов объясняется движением корабля. Но если эфира нет и скорость света не зависит от движения, все

132

это меняется. Пассажиры второго корабля могут утверждать, что их корабль неподвижен (скорость сигналов действительно не обнаруживает движения) и что сигналы попадают па экраны в одно и то же время. Но пассажиры первого корабля имеют столько же оснований настаивать на неподвижности своего корабля и одновременности освещения своих экранов. Вместе с абсолютным движением теряет смысл и абсолютная одновременность. События, одновременные в одной системе отсчета, будут неодновременными в другой системе, и наоборот. Теория Эйнштейна покончила с фикцией единого потока времени, охватывающего всю Вселенную. Соответственно она покончила с фикцией чисто пространственных мгновенных процессов. Наступила эра четырехмерного, пространственно-временного представления о мире.

Математический аппарат такого представления был создан Германом Минковским в 1908 г. Минковский в это время жил в Гёттингене. Здесь издавна, со времен Гаусса, существовала традиция крайней изощренности в строгости математической мысли и интереса к основаниям математики. Почти за столетие до описываемого времени здесь встретила сочувственное понимание геометрия Лобачевского, здесь Риман изложил своп соображения о многомерной геометрии и здесь же он построил свой вариант неевклидовой геометрии. В Гёттпнгене любили математические тонкости. Их любили все: даже физики погружались в математические построения, не преследовавшие цели разъяснения физической сущности явлений. Эйнштейн как-то пошутил: "Меня иногда удивляют гёттингенцы своим стремлением не столько помочь ясному представлению какой-либо вещи, сколько показать нам, прочим физикам, насколько они превышают нас по блеску" [1].

1 Frank, 305.

В этом замечании чувствуется некоторая досада физика, ищущего необходимый ему аппарат и сталкивающегося с работами, блестящими по форме, но вносящими скудный вклад в собственно физические представления. Однако изощренность и строгость математической мысли у самых крупных мыслителей Гёттингена была связана с очень глубоким проникновением в ее физические истоки. Идею экспериментального решения вопроса: "какая

133

геометрия из возможных, т.е. непротиворечивых, геометрий соответствует реальности", мы встречаем и у Гаусса, и у Римана, и у гёттингенцев, современников Эйнштейна. В числе ученых, работавших в те годы в Гёттингене и обладавших "душою чисто гёттингенской" (в отличие от пушкинского героя, здесь дело не сводилось к идеальным романтическим порывам), были Герман Мипковский, Давид Гильберт, Феликс Клейн, Эмма Нётер, для которых теория относительности стала исходным пунктом блестящих математических обобщений.

Рассматривая математические исследования первой четверти XX в. в широком историко-культурном плане, видишь, как в работах названных гёттингенских ученых слились две струи научного прогресса. Разработка практически неприменявшихся концепций обоснования геометрии, изощренные, тонкие и строгие определения - все это, наконец, слилось с физической идеей, для которой указанное направление математической мысли стало рабочим аппаратом. Для этого, может быть, и требовался гениальный физик, мысль которого не была отягощена грузом традиционных философских и математических концепций пространства и времени.

Гильберт говорил: "На улицах нашего математического Гёттингена любой встречный мальчик знает о четырехмерной геометрии больше Эйнштейна. И все же не математикам, а Эйнштейну принадлежит то, что было здесь сделано" [2].

2 Frank, 206.

Гильберт объяснял это тем, что Эйнштейн не воспринял традиционного математическою и философского наследства в вопросе о пространстве.

Идея физической реальности некоторой новой, нетрадиционной, может быть парадоксальной, может быть неевклидовой, геометрии появилась у Лобачевского, Гаусса и Римана. Но она не стала физической теорией. Математика в своем развитии излучает некоторые "виртуальные" физические концепции; они поглощаются самой математикой подобно виртуальным фотонам, которые поглощаются тем же самым излучившим их электроном. Соответственно и физика излучает "виртуальные" математические образы, которые не становятся исходными точками новых направлений математической мысли.

134

Но теперь все получилось не так. Математика столкнулась с физической теорией, которая могла наполнить конкретным физическим содержанием соотношения четырехмерной геометрии. Очень важно, что речь шла не о феноменологическом, а субстанциальном содержании. Когда Пуанкаре, исходя из теории Лоренца, в которой постоянство скорости света не было субстанциальным, разработал очень общий и остроумный математический аппарат теории относительности, это не дало такого толчка и физике и геометрии, как идея Минковского, исходившего из субстанциального постоянства скорости света и открытой Эйнштейном субстанциальной неразрывности пространства и времени.

Минковский показал, что принцип постоянства скорости света может быть выражен в чисто геометрической форме. Он ввел уже знакомое нам понятие "события" (пребывания частицы в данный момент в данной пространственной точке) и представил "событие" в виде точки с четырьмя координатами (три пространственные координаты - место "события" - и четвертая координата, обозначающая время "события", измеренное особыми единицами). Такую точку Минковский назвал мировой точкой. Движение изображается последовательностью мировых точек - мировой линией, а совокупность всех возможных "событий", т.е. все, что происходит или может произойти во Вселенной, соответствует всем четырехмерным, мировым точкам - четырехмерному пространству-времени, которые Минковский назвал миром.

Подобное четырехмерное представление о движении содержалось уже в первоначальной формулировке теории относительности. Но Минковский высказал идею "мира" в явной и четкой форме, и это способствовало дальнейшему развитию теории относительности.

Когда представление о независимости пространства и времени сменилось представлением о четырехмерном пространственно-временном "мире", это было переходом от ньютоновой механики к иной механике того же типа, более гармоничной и непротиворечивой, с большим "внутренним совершенством" и "внешним оправданием", более близкой к "классическому идеалу". Теперь мы посмотрим, как теория относительности в своем логическом и историческом развитии пришла к выводам, угрожающим не только механике Ньютона, но и "классическому идеалу",

135

Это развитие шло через релятивистскую динамику, т.е. через утверждения теории относительности, касающиеся ускорений тел под действием сил, к их энергии и массе.

Из основных посылок теории относительности Эйнштейн вывел новое правило сложения скоростей. Из эйнштейновского правила сложения скоростей следует, что ни в одной системе отсчета скорость данного тела не может быть больше скорости света. Пусть тело движется с некоторой скоростью и получает добавочный импульс. К старой скорости прибавится новая. Из нового правила сложения скоростей следует, что при этом скорость тела не может превысить скорость света. Дополнительные импульсы будут давать все меньшее приращение скорости по мере того, как скорость тела будет приближаться к скорости света.

Тезис о предельном характере скорости света естественно вытекал из общих допущений и из конкретных наблюдений, и Эйнштейн считал его совершенно достоверным. Поэтому он очень энергично обрушился на одну популярную иллюстрацию конечной скорости света, в которой фигурировало движение быстрее света. Речь идет о фантастической повести Фламмариона "Люмен".

Герой этой повести Люмен движется со скоростью 400 000 километров в секунду, т.е. на 100 000 километров в секунду быстрее, чем свет. Догоняя последовательно световые волны, он встречает те из них, которые вышли из источника раньше. Поэтому Люмен видит финал битвы при Ватерлоо, потом ее начало, а в промежутке - снаряды влетают в жерла пушек, мертвые поднимаются и встают в ряды сражающихся и т.д.

В апреле 1920 г. Мошковский рассказал Эйнштейну о повести Фламмариона. Эйнштейн не жалел резких слов для характеристики изложенной в ней картины. Мошковский защищал Фламмариона и говорил, что дело идет об условной иллюстрации относительности времени.

Ответ Эйнштейна изложен в воспоминаниях Мошковского в следующем виде:

"С относительностью времени, как она вытекает из учений новой механики, все эти приключения и поставленные вверх ногами восприятия имеют не больше, а, пожалуй, даже меньше общего, чем рассуждения о том, что в зависимости от наших субъективных ощущений веселья и горя, удовольствия и скуки время кажется то

136

короче, то длиннее. Здесь, по крайней мере, сами-то субъективные ощущения суть нечто реальное, чего никак нельзя сказать о Люмене, потому что его существование покоится на бессмысленной предпосылке. Люмену приписывается сверхсветовая скорость. Но это не просто невозможное, это бессмысленное предположение, потому что теорией относительности доказано, что скорость света есть величина предельная. Как бы ни была велика ускоряющая сила и как бы долго она ни действовала, она никогда не может перейти за этот предел. Мы представляем себе Люмена обладающим органами восприятий и, значит, телесным. Но масса тела при световой скорости становится бесконечно большой, и всякая мысль о ее дальнейшем увеличении заключает в себе абсурд. Дозволительно оперировать в мысли с вещами, невозможными практически, т.е. такими, которые противоречат нашему повседневному опыту, но не с полнейшей бессмыслицей" [3].

3 Мошковский, 107-108.

После этой реплики Мошковский все же продолжал защищать допустимость фантазии Фламмариона о сверхсветовой скорости. Он предложил следующую мысленную конструкцию. Вращающийся со скоростью 200 оборотов в секунду маяк посылает луч света на расстояние в 1000 километров. Конец луча - "зайчик" движется по небосводу со скоростью 600 000 километров в секунду - вдвое большей скорости света.

Этот "зайчик" часто фигурировал в распространенных когда-то, а теперь справедливо забытых попытках опровержения теории Эйнштейна. Разумеется, он ничего не опровергает. Движение "зайчика" - это вовсе не движение тождественного себе тела. Мы могли бы повернуть маяк на 180 градусов и осветить два экрана на расстоянии 2000 километров один от другого. По освещение одного экрана и последующее освещение другого экрана не являются событиями, из которых второе служит следствием первого. Прибытие какого бы то ни было физического объекта из одной точки в другую не может произойти за время, меньшее, чем время, необходимое свету, чтобы пройти расстояние между этими точками. Событие, происшедшее раньше, не является результатом события, происшедшего в данный момент, т.е. в момент отправления сигнала.

137

Чтобы разъяснить вопрос, можно воспользоваться примером, уже приведенным в популярном изложении теории относительности [4]. В "Сказке о попе и работнике его Балде" бесенок по предложению Балды бежит наперегонки с зайцем. Когда он приближается к финишу, Балда вынимает из мешка второго зайца, бесенок принимает его за своего соперника и отказывается от дальнейших состязаний. Если бы бесенок знал теорию относительности, прошел дистанцию со скоростью света и увидел зайца, пришедшего раньше, он догадался бы об обмане. Вряд ли его наивность простиралась бы до критики теории относительности, - на такую наивность Балда, вероятно, не рассчитывал. Но именно подобной наивностью отличаются все попытки опровержения теории относительности с помощью мысленных оптических экспериментов, в которых вместо фигурировавших только что зайцев бегут световые "зайчики". Все дело в том, что с точки зрения Эйнштейна события, происшедшие в двух точках и разделенные интервалом, меньшим, чем время, необходимое свету, чтобы покрыть расстояние между этими точками, такие события не являются фактами биографии одного и того же тождественного себе физического объекта.

4 См.: Кузнецов Б. Г. Беседы о теории относительности. М., 1960, с. 148.

Теория относительности была выдвинута как теория поведения тождественных себе физических объектов - не исчезающих и не возникающих частиц, которые могут воздействовать одна на другую и передвигаться одна по отношению к другой. События, из которых состоит биография такой частицы, - это ее пребывание в тех или иных точках в те или иные моменты. Такое пребывание означает, что частица находилась возле определенных делений измерительных стержней (начала которых приложены к осям системы отсчета) в момент, когда некий повторяющийся процесс (например, движение стрелки) совершил определенное число циклов после события, принятого за начало отсчета времени.

В своем дальнейшем развитии физика столкнулась с затруднениями: определенное положение частицы не всегда может получить такой простой физический смысл. То же относится к моменту времени, когда происходят события в жизни частицы. Создание единой теории, которая исходила бы из постулатов относительности и из указанной неопределенности координат и времени "событий", стало начиная с тридцатых годов одной из основных задач теоретической физики.

138

Чтобы подойти впоследствии к этой проблеме, нам нужно сейчас коснуться тех изменений, которые претерпели в работах Эйнштейна понятия массы и энергии.

Когда при скорости, приближающейся к скорости света, дополнительные импульсы дают все меньшее ускорение, дело происходит так, как будто масса тела растет по мере увеличения скорости и стремится к бесконечности, когда скорость тела стремится к скорости света. Именно таково соотношение между массой и скоростью. Отсюда Эйнштейн вывел соотношение между эпергией движущегося тела и его зависящей от скорости массой. Чтобы получить массу, зависящую от скорости, массу движения тела (этого понятия не было в классической физике), нужно разделить энергию движения на квадрат скорости света, т.е. на громадное число, которое получится, если скорость света, выраженную в сантиметрах в секунду, т.е. 30 000 000 000 (3x10 в 10 степени), возвести в квадрат. На это число (900 000 000 000 000 000 000, т.е. 9x10 в20 степени) нужно разделить энергию (выраженную в эргах), чтобы получить массу (в граммах) и соответственно на это число нужно умножить массу, чтобы получить энергию. Но тела обладают массой и тогда, когда они неподвижны. Эта масса называется массой покоя.

Не все тела обладают массой покоя; частицы электромагнитного излучения - кванты света, т.е. фотоны, - не обладают такой массой и никогда ни в одной системе отсчета не остаются неподвижными, ведь свет распространяется с одной и той же скоростью 300 000 километров в секунду во всех системах отсчета. Но другие частицы обладают массой покоя. Эйнштейн предположил, что масса покоя тела пропорциональна внутренней энергии подобно тому, как масса движения (дополнительная масса, обязанная движению тела) пропорциональна энергии движения тела. Внутренняя энергия тела равна массе покоя, умноженной на квадрат скорости света (на число 9x10 в 20 степени). Написанное только что число с двадцатью нулями указывало на ничтожный прирост массы при обычных скоростях. Этот прирост равен приросту энергии движения тела, деленному на колоссальное число. Теперь число

139

9x10 в 20 сепени в первую очередь указывает на огромную величину энергии, соответствующую единице массы. Число, которое было мерой отдаленности теории относительности от практически применяемых процессов, стало мерой ее мощного воздействия на эти процессы. Мы уже вступили в эпоху практического использования энергий, сопоставимых со всей, внутренней энергией частиц. В атомных реакторах освобождается энергия порядка тысячных долей этой полной внутренней энергии частиц, равной массе покоя, умноженной на квадрат скорости света. Раньше техника оперировала энергиями тел порядка миллионных долей их полной внутренней энергии. Впереди - быть может, использование энергии одного порядка со всей внутренней энергией тел. Такое использование основано на процессах перехода всей внутренней энергии тел (и, соответственно, массы покоя) в энергию движения (и, соответственно, в массу движения). Подобный переход означал бы, что частица с массой покоя превращается в частицу, лишенную массы покоя. Как мы увидим, такие переходы были предсказаны при объединении теории относительности с квантовой механикой и потом экспериментально обнаружены. Мы увидим также, что указанные переходы, т.е. превращения частиц одного типа в частицы другого типа, выходят за рамки не только ньютоновой картины мира, но и "классического идеала", т.е. картины движения тождественных себе тел. Такова общая судьба идей Эйнштейна. Выдвинутые с тем, чтобы упорядочить классическое представление о мире, они привели к более радикальным результатам.

Прага и Цюрих

Научный подвиг Кеплера стал возможным, когда мыслитель освободился в высокой степени от унаследованных интеллектуальных традиций. Речь идет не только о традициях, освященных авторитетом церкви, но и о всем, что ограничивает значение мысли и опыта в познании мира и в жизни людей.

Эйнштейн

Острота ситуации, созданной опытом Майкельсона, явная искусственность лоренцевой гипотезы, безукоризненная корректность и законченность концепции Эйнштейна - все это привело к признанию новой теории довольно широким кругом ученых. Среди них по крайней мере один (это был Планк) понимал, что в физике появился гений, какие рождаются раз в столетие. Вместе с признанием, распространением и развитием теории относительности росла слава Эйнштейна. В конце концов - как это бывает - она дошла до страны, в которой жил Эйнштейн. В Цюрихском университете захотели привлечь Эйнштейна в число профессоров. Но этого не допускали университетские правила: нельзя было назначить профессором человека, не получившего до того звания доцента. Решили пока пригласить Эйнштейна в Бернский университет на должность приват-доцента, т.е. преподавателя, получающего очень небольшую плату и читающего предметы, не входящие в программу. Обязанности приват-доцента можно было совмещать со службой в патентном бюро, в то же время это открывало Эйнштейну путь к должности профессора в Цюрихе.

Эйнштейн согласился, хотя и без особого энтузиазма. Он понимал, что патентное бюро не может стать ого жизненным поприщем. Но он боялся, что лекции отнимут время от исследований и выбьют из привычной колеи - необременительной службы и досуга, отданного исследовательской деятельности.

141

В течение зимы 1908/09 г. Эйнштейн совмещал обязанности приват-доцента со службой в патентном бюро. Летом 1909 г. он испытал первые академические почести - Женевский университет удостоил его звания доктора honoris causa и пригласил на торжественный праздник 350-летия этого университета, основанного Кальвином. Участники юбилейных торжеств вспоминали потом, каким веселым, светлым пятном выглядели соломенная шляпа и обычный костюм Эйнштейна среди расшитых фраков французских академиков, средневековых мантий англичан и множества других экзотических нарядов двухсот представителей университетов всей Земли.

В том же году, вскоре после женевских торжеств, Эйнштейн узнал, что в Цюрихском университете открылась вакансия по курсу теоретической физики. На нее, кроме Эйнштейна, мог претендовать Фридрих Адлер, учившийся вместе с Эйнштейном в Политехникуме. Адлер в это время был приват-доцентом по физике в Цюрихском университете. Он пользовался большим влиянием в цюрихских организациях социал-демократической партии. Руководство Цюрихским кантональным департаментом просвещения находилось в руках социал-демократов, и, когда открылась профессорская вакансия, Адлер представлял для департамента наиболее желательную кандидатуру. Однако Адлер заявил, что как ученый он не идет ни в какое сравнение с Эйнштейном и что не следует упускать возможность приобрести человека, имя и деятельность которого повысят престиж и научный уровень университета.

Эйнштейн стал экстраординарным профессором. Должность экстраординарного, т.е. внештатного, профессора оплачивалась хуже, чем должность ординарного профессора, и заработок Эйнштейна оставался примерно таким же, как и в Берне. Жизнь же в Цюрихе была дороже. Вскоре Милеве пришлось дополнять заработок Эйнштейна приготовлением домашних обедов для студентов. Тем не менее жизнь в Цюрихе вспоминалась потом Эйнштейну как счастливое время. Он нашел здесь старых друзей, скромного и преданного товарища по студенческой скамье - Марселя Гроссмана.

Эйнштейн приступил к чтению лекций. Воспоминания его слушателей рисуют Эйнштейна на университетской кафедре.

142

Приведем некоторые воспоминания, относящиеся к 1909-1911 гг.

Ганс Таннер, слушавший в это время лекции Эйнштейна (читавшего в 1909-1910 гг. введение в механику, термодинамику, кинетическую теорию тепла, а в 1910- 1911 гг. - электричество и магнетизм и курс под названием "Избранные разделы теоретической физики"), рассказывает:

"Когда он поднялся на кафедру, в поношенном костюме, со слишком короткими брюками, когда мы увидели его железную цепочку от часов, у нас появилось скептическое отношение к новому профессору. Но с первых фраз он покорил наши черствые сердца своей неповторимой манерой чтения лекций. Манускриптом, которым Эйнштейн пользовался при чтении, служила заметка величиной с визитную карточку. Там были обозначены вопросы, которые он хотел осветить в лекции. Таким образом, Эйнштейн черпал содержание лекции из собственной головы, и мы оказались свидетелями работы его мысли. Насколько привлекательным был подобный метод для студентов, привыкших к стилистически безукоризненным, заглаженным лекциям, увлекавшим в первый момент, но оставлявшим ощущение пропасти между преподавателем и нами. А здесь мы сами видели, как возникают научные результаты - оригинальными путями. Нам казалось после лекции, что мы сами могли бы ее прочесть" [1].

1 Seelig, 171.

Это ощущение естественности научных результатов характерно не только для метода преподавания Эйнштейна, но и для метода его исследований и для содержания его идей. Между методом чтения лекций и их содержанием существовала глубокая гармония. Научные теории, отлившиеся в привычные формы и вместе с тем содержащие произвольные допущения, излагаются чаще всего в догматическом тоне. Когда веет дух парадоксальной, но глубоко естественной в своей основе научной идеи, изложение уже не может охватывать лишь результаты мысли, сама мысль, ищущая, творческая, часто парадоксальная сверкает перед аудиторией. Она становится естественной, "очевидной", она кажется слушателю "своей" по мере того, как парадоксальный тезис становится неизбежным выводом из новых исходных представлений о природе. Эйц-

143

штейн излагал в лекциях главным образом классическую физику, но теперь, после пересмотра ее основ, классическая физика трактовалась по-иному и, соответственно, излагалась в иной манере. Перед студентами открывалось не упорядоченное здание, а строительная площадка, и Эйнштейн не столько объяснял студентам план здания, сколько обсуждал вместе с ними проект перестройки.

"В 1909-1910 гг., - пишет Таннер, - я слушал лекции Эйнштейна. Все были одинаково интересны. У меня сохранилось такое впечатление, будто мы сами могли устанавливать тему. Изложение касалось то классической механики (мы слушали ее и у других преподавателей и могли почувствовать разницу в подходе), то новых идей, например квантовой теории Планка, вызывавшей оживленные дискуссии" [2].

Идеям Эйнштейна соответствовали не только содержание и стиль лекций, но и манера поведения во время лекций и в перерывах. "Мы имели право в любой момент прервать его, если нам что-либо казалось неясным. Вскоре мы вовсе перестали стесняться и подчас задавали элементарно глупые вопросы. Непринужденности наших отношений способствовало то, что Эйнштейн и па перерывах оставался с нами. Импульсивный и простой, он брал студента под руку, чтобы в самой дружеской манере обсудить неясный вопрос" [3].

2 Seelig, 172.

3 Ibid., 171.

Таннер рассказывает о еженедельном вечернем коллоквиуме по физике. После него Эйнштейн спрашивал: "Кто пойдет со мной в кафе "Терраса"?" Там продолжалась дискуссия, часто переходившая с физических и математических вопросов на самые различные проблемы науки и жизни. Однажды Эйнштейн поздно вечером, когда в Цюрихе наступил так называемый "полицейский час" и кафе было закрыто, увел двух студентов домой, засадил их за новую статью Планка, потребовал, чтобы они нашли содержащуюся там ошибку, а сам ушел, чтобы сварить для них кофе. Когда кофе был готов, ошибка еще не была найдена. Эйнштейн указал на нее: ошибка была чисто математической и не колебала физического вывода. По этому поводу Эйнштейн в блестящей импровизации изложил свои соображения о математических методах и физической истине" [4].

Из своих старых товарищей по Политехникуму Эйнштейн общался больше всего с Гроссманом. Наиболее важные для науки беседы друзей имели место позже, по уже в 1909-1911 гг. Эйнштейну приходилось прибегать к советам Гроссмана, разрабатывавшего в это время проблемы неевклидовой геометрии. Встречался Эйнштейн и с Адлером, они жили в одном доме и иногда убегали от шума на чердак, чтобы поговорить. Беседы их, по всей вероятности, включали философские споры: Адлер был махистом, и ему была чужда уверенность Эйнштейна в объективной реальности мира. Он, как и Мах, был противником теории относительности.

Эйнштейн дружил также с двумя цюрихскими профессорами - цивилистом Эмилем Цюрхером и историком Альфредом Штерном. Эйнштейн писал, что он ценит в Цюрхере его тонкое понимание психологии людей, умение сопоставлять далекие одно от другого понятия, разнообразие интересов и добродушный юмор. "Круг интересов Цюрхера неограничен, и его здравые суждения о людях и вещах выходят за рамки профессиональных знаний. Эти суждения показывают недостаточность формальной логики - их можно постигнуть, если самому пришлось много читать и сопоставлять. Он - один из самых интересных людей, которые мне вообще когда-либо встречались" [5].

Для Эйнштейна характерно близкое и постоянное интеллектуальное общение с людьми, далекими от физики и математики. Он много беседовал с юристами, историками, врачами. По-видимому, такая склонность связана с характером основных идей Эйнштейна. Он поднимался от конкретных физических расчетов к коренным вопросам бытия и именно на этом пути подходил в конце концов к самым конкретным (иногда прямо выходящим в практику) заключениям. Многим это восхождение к вершинам казалось уходом от пауки в область общефилософских концепций. Даже такой живой и широкий мыслитель, как Нернст, говорил, что эйнштейнова теория броуновского движения выше теории относительности, потому что последняя уже не является физической теорией, а принадлежит к числу философских обобщений. Это типично "до-атомное" суждение.

4 Ibid., 173-174.

5 Ibid., 185.

145

Характер научных идей и интересов позволял Эйнштейну подчас находить собеседников по научным вопросам среди людей, далеких от официальной науки, во всяком случае от физики. Ведь этим людям доступны и близки общие соображения о пространстве и времени, "детские" размышления, не стертые уверенностью в "очевидности" традиционных понятий, уверенностью, вырастающей из привычного профессионального оперирования этими понятиями. У Эйнштейна подобные размышления были исходным пунктом физических концепций.

Эйнштейн дружил в Цюрихе с историком Альфредом Штерном, к которому он приходил в свои студенческие годы. Впоследствии, в день восьмидесятилетия Штерна, Эйнштейн писал о нем: "...Едва ли я знаю второго человека с такой чудесной непоколебимостью сохраняющего себя при катастрофической смене бытия, мнений и оценок" [6].

Очень близок Эйнштейну был всемирно известный специалист по паротурбостроению Аурел Стодола. Характеристика Стодолы, написанная Эйнштейном в 1929 г., интересна не только для оценки знаменитого теплотехника, она раскрывает черты самого Эйнштейна. Мы приведем эту характеристику почти полностью.

"Если бы Стодола родился в эпоху Ренессанса, он был бы великим художником или скульптором, потому что главным свойством его личности являются мощь фантазии и созидания. В минувшем столетии подобные натуры чаще всего обращались к технике. Здесь, в технике, нашла свое выражение созидательная мощь века, здесь страстная жажда прекрасного находила пути воплощения, превосходящего все, что мог бы предположить человек, не знакомый с этой областью. Могучий порыв Стодолы не остывал в течение многих лет преподавательской деятельности и перешел к ученикам - их глаза светятся, когда речь идет об учителе. Другая сильная сторона Стодолы - неугомонная любознательность и редкая ясность научного мышления. Когда автор этих строк в качестве новоиспеченного преподавателя читал курс теоретической физики в Цюрихском университете, к его радости и ужасу в аудитории появился чудесный образ. Это был Стодола, занимавшийся теоретической физикой отчасти из бескорыстного интереса, отчасти для своих творческих задач... Чувство робости перед этим громадным человеком быстро исчезало под действием сквозивших в его словах доброты и лояльности. Он подавлял своей скромностью. С силой и живостью его ума странно контрастировали необычайная душевная кротость и мягкость. Его глубоко трогало страдание живого существа, особенно, если причиной была тупая жестокость людей. Ему были близки социальные проблемы современности. Этому одинокому, как все независимые люди, человеку было свойственно высокое чувство общественного долга. Страх, господствующий в отношениях между людьми, и ощущение бессилия у людей перед неумолимой трагедией мировых событий причиняли ему страдание. Успех и любовь многих людей не уменьшали его болезненной чувствительности, и он был одинок. Это компенсировалось любовью к музыке и привязанностью к двум дочерям. Одну из них, Елену, он потерял... В его глубокой скорби выразилось богатство души этого чудесного человека" [7].

6 Seelig, 185.

7 Ibid., 188-189.

Этот портрет кажется изображением самого Эйнштейна. Человек, никогда не думавший о себе, может создать автопортрет, рисуя черты близкой ему по духу натуры.

Семья Эйнштейна пополнилась еще одним сыном - Эдуардом, родившимся в июне 1910 г. Он был похож па отца чертами лица и большими ясными глазами, а впоследствии - музыкальностью.

В конце 1910 г. открылась вакансия ординарного профессора теоретической физики в Пражском университете - одном из старинных университетов Европы. В девяностые годы по указу австрийского правительства произошло разделение университета на два - немецкий и чешский. Покровительством властей пользовался немецкий университет. Это было звеном германизации славянских стран, подвластных Габсбургской монархии.

Первым ректором немецкого университета был Эрнст Мах. Когда он покинул университет, прочно утвердившееся влияние идей Маха сохранялось и поддерживалось его последователями и учениками, стоявшими во главе уни-

147

верситета. Одной из наиболее влиятельных фигур был Антон Лампа, чех по происхождению и вместе с тем ярый сторонник германизации. Лампа - сын дворника, служившего в доме, принадлежавшем богатым немцам, мог сравнить бедность и бесправие своей чешской семьи с положением хозяев. Он решил превратиться из наковальни в молот, окончил немецкую гимназию, а затем немецкий университет и, заняв руководящее положение в университете, активно насаждал немецкую культуру и изгонял нее чешское. В Праге рассказывали, как Лампа, покупая почтовые открытки, раздраженно возвращал их, если надпись была на чешском и на немецком языках, требовал, чтобы ему продали открытку только с немецкой надписью, и поднимал крик, если ему в этом отказывали.

В 1910 г. Лампа и другие руководители немецкого университета хотели придать ему вящий блеск, пригласив в число профессоров человека с европейским именем. Быть может, имя Эйнштейна импонировало и философским симпатиям Лампы - ученика и усердного сторонника Эрнста Маха. Как уже говорилось, в отличие от самого Маха, разглядевшего антипозитивистское острие теории относительности, некоторые его ученики думали, что критика ньютоновой концепции мира приводит Эйнштейна к скептицизму в отношении объективности научных концепций в целом. Во всяком случае, Лампа пригласил Эйнштейна участвовать в конкурсе и запросил у ряда крупных физиков отзывы о цюрихском кандидате. От Макса Планка он получил ответ: "Если теория Эйнштейна окажется справедливой, на что я рассчитываю, его следует считать Коперником двадцатого столетия".

Снова, как и в Цюрихе, Эйнштейн был вторым кандидатом и снова его соперник отказался в пользу Эйнштейна. Только причины отказа были противоположны побуждениям, руководившим Фридрихом Адлером.

Первым кандидатом был Густав Яуманн, профессор физики в Технологическом институте в Брно, ярый последователь Маха, человек с большими претензиями. Венские чиновники склонны были предпочесть его как коренного австрийца, пражские профессора - как признанного махиста. Непредвиденное обстоятельство помешало ему. В списке кандидатов имя Эйнштейна стояло первым. Это взбесило Яуманна, он заявил, что в университете, где случайную популярность предпочитают действительным заслугам, ему делать нечего, и наотрез отказался от предлагаемого места.

148

Должность была предоставлена Эйнштейну. Он не без колебаний принял предложение. Милеве было очень тяжело снова бросить родную ей обстановку и оказаться изолированной в чуждой среде. Да и Эйнштейну не хотелось оставлять Цюрих. Но должность штатного профессора предоставляла ему большую независимость. Эйнштейн дал согласие и с осени 1911 г. начал преподавание в Праге.

В Австро-Венгрии при вступлении на государственную службу требовалось сообщить о вероисповедании. Император Франц-Иосиф категорически требовал не допускать на службу кого-либо, не принадлежавшего к официальной церкви. Поэтому даже для атеистов было в обычае указывать вероисповедание по национальной принадлежности. Так поступил и Эйнштейн.

Эйнштейн обосновался в Праге. Он видел города Италии, Мюнхен, ему был близок облик городов Швейцарии. Прага ничего не повторяла. Первая прогулка по ее улицам, первый взгляд на панораму Праги с одного из ее многочисленных холмов вызвали у пего любовь к городу.

Эйнштейн бродил по Праге и заодно наносил предписанные этикетом визиты. Их нужно было сделать почти сорок. Эйнштейн добросовестно знакомился с коллегами, их супругами и домочадцами, но постепенно визиты становились все более тягостными. Эйнштейн выбирал в первую очередь тех из своих коллег, которые жили в привлекавших его кварталах Праги. Архитектурно-эстетический критерий не совпадал с требованиями служебной иерархии, и Эйнштейна стали подозревать в недостаточном уважении к последней - подозрение очень тяжелое в годы, когда в университете энергично насаждалась чиновничья субординация.

В конце концов Эйнштейн прекратил визиты, так и не выполнив обязательной программы. Но прогулки по Праге продолжались. Эйнштейна увлек этот город с его старинными домами, ратушей, церквами и башнями и с молодой зеленью садов и парков. Он ходил вдоль берега Влтавы, делящей город на две части, и уже издали радовался виду, который всегда оставался новым, неожиданным - подлинным чудом: перед ним появлялся Карлов мост через Влтаву со скульптурами XV в. По этому мосту он переходил на другой берег, любовался "пражской Венеци-

149

ей" - домами, лепящимися над водами Влтавы. Затем Эйнштейн поднимался на Градчаны. Здесь его встречала гармония различных архитектурных форм, в которой застыл тысячелетний труд чешского народа. Эта гармония потому и была такой естественной - она создавалась естественным течением истории и как бы символизировала нечто разумное, некое ratio, пробивавшее себе путь через хаос противоречий. Эйнштейн видел в Градчанах романскую церковь святого Георгия, построенную в XII в., затем заходил под своды собора святого Вита. Рациональные формы собора кажутся не столько воплощением мистического духа средневековья, сколько воплощением механики XIV в. Спускаясь затем мимо Златой улички - ремесленного квартала средневековой Праги, Эйнштейн видел сохранившиеся жилища и обстановку людей, которые, накопляя эмпирические знания, подготовляли Возрождение, новую картину мира и в конце концов блестящий взлет рационалистического "классического идеала". Прага навевала воспоминания о провозвестниках "классического идеала". В построенной в начале XV в. Тынской церкви находится гробница Тихо Браге, проведшего в чешской столице последние годы своей рано прервавшейся жизни. Здесь он оставил Иоганну Кеплеру колоссальные по объему записи астрономических наблюдений. Эйнштейн ходил по камням города, где были сделаны открытия, лежащие в основе классической картины мироздания.

Среди друзей, которых приобрел Эйнштейн в Праге, был молодой писатель Макс Брод. В истории идей и открытий Брод искал психологические черты выдающихся людей своей родины. Филипп Франк рассказывает, что, работая над образами Тихо Браге и Кеплера, Брод почувствовал общность характеров Эйнштейна и Кеплера [8]. Он написал новеллу "Искупление Тихо Браге". Трудно сказать, насколько верен в ней образ Кеплера, но всем было очевидно, что Брод придал ему черты Эйнштейна, обаяние которого Брод испытывал на себе в то время. Прочитав новеллу, Нернст сказал Эйнштейну: "Кеплер, это вы".

8 Frank, 85.

150

В новелле Брода Кеплер, равнодушный к жизненным благам, к земным утехам, черпает радость в поисках научной истины. Он возражает Тихо Браге, который хочет согласовать астрономическую систему с церковными догмами. Какова бы ни была астрономическая гипотеза - следует думать о ней самой, а не об императорской милости. Образ Кеплера был близок Эйнштейну не только подобной репликой, но и тем ощущением мировой гармонии, которым пронизано творчество пражского астронома.

По "мускулатуре мысли" - в данном случае механико-математической - трудно указать мыслителя одного ранга с Кеплером. Он превосходил всех мыслителей своего поколения и своим отчетливым стремлением найти причины существующей структуры Солнечной системы. Законы Кеплера - первый непоколебимый камень, вошедший в фундамент науки нового времени, он не будет поколеблен и впредь при перестройке фундамента. На нем зиждется массив ньютоновой механики.

Но Кеплер не оказал такого преобразующею воздействия на духовную жизнь человечества, как Галилей. И не только потому, что галилеева идея инерции была ключом к повой пауке, и не в силу единства, последовательности и ясности идей Галилея, исключавших кеплеровы туманные грезы о "музыке сфер". Научный темперамент Кеплера тянул его к уединенным вычислениям. В них, конечно, потенциально содержались все духовные и материальные потрясения, вызванные созданием однозначной механической картины мира, рационалистической критикой и всем, что из этого вытекало. Но общественные бури лежали до поры до времени в ящике Пандоры, каким оказался новый взгляд па природу. Кеплер не был общественным борцом, законы Кеплера не были знаменем общественной борьбы.

Галилей был не только автором прозрачно-ясной картины мира, но и борцом за ее признание. Он хотел не только узнать истину о мире, но и возвестить эту истину.

Через тридцать с лишним лет после "Искупления Тихо Браге" Макс Брод выпустил роман "Галилей в плену" и отправил его Эйнштейну. В июле 1949 г. он получил письмо, излагавшее, помимо прочего, взгляд Эйнштейна на борьбу Галилея против канонизированных догматов. "Что касается Галилея, я представлял себе его иным. Нельзя сомневаться в том, что он страстно добивался истины - больше, чем кто-либо иной. Но трудно поверить, что зрелый человек видит смысл в воссоединении най-

151

денной истины с мыслями поверхностной толпы, запутавшейся в мелочных интересах. Неужели такая задача была для него важной настолько, чтобы отдать ей последние годы жизни... Он без особой нужды отправляется в Рим, чтобы драться с попами и прочими политиканами. Такая картина не отвечает моему представлению о внутренней независимости старого Галилея. Не могу себе представить, чтобы я, например, предпринял бы нечто подобное, чтобы отстаивать теорию относительности. Я бы подумал: истина куда сильнее меня, и мпе бы показалось смешным донкихотством защищать ее мечом, оседлав Росинанта..." [9]

Свойственная Кеплеру погруженность в поиски и созерцание истины была ближе Эйнштейну, чем пламенный общественный темперамент Галилея.

Эйнштейну принадлежит характеристика идей и личности Кеплера, пронизанная ощущением глубокой конгениальности. Эйнштейн читал письма Кеплера, и они произвели на него впечатление, не меньшее, чем классические работы, в которых сформулированы законы движения небесных тел.

"В письмах Кеплера, - говорит Эйнштейн, - мы имеем дело с человеком тонких чувств, всецело и страстно увлеченным поиском пути к более глубокому проникновению в сущность явлений природы, с человеком, который, несмотря на внутренние и внешние трудности, сумел достичь поставленной перед собой возвышенной цели" [10].

9 Seelig, 210-211.

10 Эйнштейн, 4, 324.

Возвышенная цель Кеплера была первым наброском "классического идеала" - она состояла в каузальной картине мироздания. В чем же состояли внешние и внутренние трудности?

Внешние трудности вытекали из несовместимости каузального объяснения с господствующими взглядами. Такая несовместимость по-иному окрашивала внутренний мир Кеплера, чем внутренний мир Галилея. Кеплер не был склонен ни к идейным компромиссам, пи к идейной борьбе. Эйнштейн пишет о Кеплере.

152

"Ни бедность, ни непонимание современниками, довлевшее над всей его жизнью и работой, не смогли сломить его духа. Кроме того, надо учесть, что ему приходилось иметь дело с областью знания, непосредственно задевавшей сторонников религиозных догм. Но он принадлежал к числу тех немногих людей, которые не могут не высказывать открыто своих убеждений по любому вопросу. В то же время он не был одним из тех, кто получает инстинктивное удовлетворение от борьбы с другими, как это было, например, в случае Галилея, чей едкий сарказм и поныне доставляет удовольствие образованному читателю. Кеплер был правоверным протестантом и не делал секрета из того, что он согласен не со всеми установками церкви. Поэтому его считали своего рода умеренным еретиком и соответственно относились к нему.

Здесь будет уместно остановиться на тех внутренних трудностях, которые Кеплеру приходилось преодолевать и о которых я уже упоминал. Понять их не так легко, как трудности внешнего характера. Дело всей его жизни было, по-видимому, тем единственным делом, в котором ему удалось в значительной мере освободиться от тех интеллектуальных традиций, в обстановке которых он был рожден. Это были не только религиозные традиции, основанные на авторитете церкви, но и общие представления о природе, об ограниченных возможностях познания явлений в космосе и в человеческой жизни, а также идеи об относительной ценности мышления и опыта в науке.

Он должен был освобождаться от анимистической, телеологической манеры мышления в научном исследовании. Ему пришлось ясно осознать, что само по себе логико-математическое теоретизирование, каким бы ярким оно ни было, не гарантирует истины и что в естественных на уках самая изящная логическая теория ничего не стоит без сравнения с наиболее точными экспериментами и наблюдениями. Без подобного философского подхода его труд был бы невозможен. Он не говорит об этом ясно, но внутренняя борьба находит свое отражение в его письмах" [11].

11 Эйнштейн, 4, 325-326.

Эйнштейну понятен уход Кеплера с поля общественной борьбы за новые научные идеи (при полном отказе от каких-либо компромиссов!), но Эйнштейн видит также, что у Кеплера, в отличие от Галилея, сохраняются внутренние препятствия для чисто каузального понимания гармонии бытия. Эйнштейну оставалась несколько чуждой

153

активность Галилея в части идейных столкновений, но он понимал ее значение. Для самого Эйнштейна характерна не только кеплеровская погруженность во внутренний мир, не только кеплеровская неспособность к компромиссам, но и свойственная Галилею полная (гораздо более полная, чем у Кеплера) внутренняя свобода от всего, что препятствует каузальному пониманию гармонии мироздания.

Снова и снова приходится писать это слово "гармония" и злоупотреблять музыкальным термином, чтобы охарактеризовать чувства и мысли Эйнштейна: для жизни Эйнштейна наиболее характерно то, что сам он говорил о Нильсе Боре: "высшая музыкальность". Ощущение гармонии мироздания, мечта о гармоничном обществе, впечатление гармонии архитектурных форм города... И, конечно, гармония в прямом смысле - гармония звуков. В этом отношении Прага была источником очень важных для Эйнштейна впечатлений. Звуки органа в католических соборах, хоралы протестантских церквей, скорбные напевы еврейских мелодий, мощное звучание гуситских гимнов - все это сплеталось с народными песнями, с творчеством чешских, русских, немецких композиторов.

Среди общей, довольно безликой массы пражских профессоров были и незаурядные люди. С некоторыми из них Эйнштейн сблизился. Образовалась среда, отвечавшая потребностям Эйнштейна в научном и интеллектуальном общении. Она же отвечала и его музыкальным наклонностям.

Эйнштейн дружил с математиком Георгом Пиком. Близости последнего с Эйнштейном способствовал интерес к физическим проблемам, сохранившийся у Пика с молодости, когда он был ассистентом Маха по экспериментальной физике. Этот пятидесятилетний профессор был, как и Лампа, последователем Маха. Эйнштейн нашел в нем неутомимого оппонента в философских спорах. Кроме того, Эйнштейн в этот период преодолевал особенные трудности, связанные с математическим аппаратом общей теории относительности, и его очень интересовали беседы с Пиком по математическим вопросам. Именно Пик натолкнул Эйнштейна на труды итальянских математиков Риччи и Леви-Чивиты, обогатившие математический арсенал Эйнштейна. Пик играл на скрипке. Он познакомил Эйнштейна с другими любителями музыки, и их музыкальные встречи происходили почти ежедневно.

154

Впоследствии, во время гитлеровской оккупации Чехословакии, Пик был замучен в лагере смерти.

Эйнштейн бывал часто и в доме Морица Винтерница, профессора древней истории, специалиста по санскриту. Разделявшие их профессиональные интересы не мешали оживленным беседам на общие, в частности литературные, темы. Привлекала Эйнштейна и веселая стайка пятерых детей Винтерница, с которыми он подружился. Сюда Эйнштейн приносил и свою скрипку. Ему аккомпанировала двоюродная сестра Винтерница, учительница музыки, очень требовательная исполнительница - Эйнштейн ее называл своим строгим сержантом.

Скромность, доброта, общительность и юмор, большей частью незлобивый, создали Эйнштейну немало друзей. Но, как ни странно, именно эти свойства создавали и врагов. Скромность часто оборачивалась непочтительным отношением к профессорскому званию, шокировавшим гелертерские круги в университете и вне университета. Скромный костюм Эйнштейна (пожалуй, он был более чем скромным) казался бунтом против академической респектабельности. Расскажем, кстати, со слов Филиппа Франка [12] историю принадлежавшего Эйнштейну парадного университетского мундира, который полагалось иметь каждому профессору на случай представления императору. Этот мундир с золотыми галунами и треуголка с перьями были переданы Франку, сменившему Эйнштейна в Праге, потом мундир украшал фигуру и, главное, спасал от пражской зимы бежавшего из России казачьего генерала, разжалобившего жену Франка своим полузамерзшим видом. Затем шпага и треуголка Эйнштейна хранились как реликвия в университетском музее, сока в годы оккупации нацисты публично не сожгли их.

12 Frank, 100.

Многих раздражала доброта и общительность Эйнштейна. Они были направлены на людей различных социальных групп. В университете не могли простить Эйнштейну, что он в одинаковой сердечной манере разговаривает и с коллегами, и с университетскими служителями. И, наконец, наибольшее число врагов приносил Эйнштейну его юмор. Во-первых, он не всегда был беззлобным. Во-вторых, каждая шутка, выходившая за рамки стандартных профессорских острот, казалась подозрительной в глазах строгих ревнителей того смешного жеманства и важничанья, которое Ленин совсем в другое время и совсем в другой связи называл французским словом "pruderie" [13].

13 См.: Ленин В. И. Полн. собр. соч., т. 33, с. 452.

155

В 1911 г. Эйнштейн поехал из Праги в Брюссель на Сольвеевский конгресс. Весьма посредственный ученый и очень крупный инженер Сольве решил сообщить о своих физических идеях конклаву крупнейших физиков мира. В качестве владельца крупных химических предприятии и ревнителя науки он был знаком с немецким химиком и физиком Вальтером Нернстом. Они пришли к мысли собрать в Брюсселе ведущих физиков, обсудить животрепещущие проблемы, обменяться научными достижениями и критически осмыслить спорные положения. Нервет составил список приглашенных, а Сольво взялся финансировать это предприятие: каждому участнику оплачивались путевые расходы, содержание во время пребывания в Брюсселе и выдавалась еще тысяча франков.

В Сольвеевском конгрессе 1911 г. участвовала сравнительно небольшая группа ученых. В их числе были Резер-форд из Англии, Мария Склодовская-Кюри, Пуанкаре, Перрен и Ланжевен из Франции, Планк и Нернет из Германии, Лоренц из Голландии, Эйнштейн и Газенёрль из Австро-Венгрии. Вступительное приветствие Сольве и его сообщение о собственной теории не отняли много времени. Легко примирившийся с тем, что не стал гением, Сольве решил собирать аналогичные конгрессы и впредь; одно время они были наиболее важными регулярными международными встречами физиков.

На Сольвеевском конгрессе 1911 г. проходило оживленное обсуждение теории относительности. Эйнштейн в письме в Цюрих к своему другу доктору Генриху Цангеру говорил, что сущность теории относительности не была понята. В частности, Пуанкаре, по мнению Эйнштейна, несмотря на остроумие своих построений, слабо понимал ситуацию в физике.

Тем не менее конгресс произвел очень сильное впечатление на Эйнштейна. В письме к Цангеру он с особенной теплотой писал о Лоренце: "...Он является чудом интеллигентности и такта. Подлинное живое произведение искусства! По-моему, Лоренц - самый интеллигентный среди всех присутствующих теоретиков..." [14]

156

Впоследствии, в 1928 г., когда Лоренц умер, Эйнштейн произнес над его могилой речь, в которой повторил то же выражение:

"Свою жизнь он до мельчайших подробностей создавал так, как создают драгоценное произведение искусства. Никогда не оставлявшие его доброта, великодушие и чувство справедливости вместе с глубоким, интуитивным пониманием людей и обстановки делали его руководителем всюду, где бы он ни работал. Все с радостью следовали за ним, чувствуя, что он стремится не властвовать над людьми, а служить им. Образ и труды его будут служить на благо и просвещение еще многих поколений" [15].

14 Helle Zeit, 43.

15 Эйнштейн, 4, 95.

Лоренц был близок Эйнштейну не только кругом интересов. Это был человек, для которого "надличное" было самым личным. Когда новые открытия разбили классическую физику, Лоренц говорил, что жалеет, почему он не умер раньше крушения старых устоев. Интересен здесь вовсе не трагический реквием классической физике. Сожаление об ушедших ценностях было, вероятно, не таким уж органическим и сменялось радостным восприятием нового. Интересна здесь эмоциональная глубина впечатлений, полученных при анализе развития науки. Человек, для которого наука в такой степени была основой отношения к жизни, представлял собой действительно "чудо интеллигентности". У Эйнштейна отношение к науке было также очень эмоциональным, но если бы Эйнштейна спросили, не вызывают ли у него перевороты в науке мыслей о собственной жизни и смерти, он ответил бы, вероятно, что такие мысли у него вообще не появляются. Примерно так он отвечал на некоторые аналогичные вопросы. У Эйнштейна "надличное" не только заполняло сознание, но заставляло мысль парить на таких высотах, от куда собственная жизнь и собственная смерть уже казались несущественными.

157

Через год после Сольвеевского конгресса Эйнштейн покинул Прагу и вновь оказался в Цюрихе. В 1912 г. ему предложили занять кафедру теоретической физики в цюрихском Политехникуме, где он когда-то учился. Политехникум - федеральное учреждение - был несравним но научному уровню с Цюрихским университетом, подчиненным кантональному управлению. Федеральному правительству Швейцарии удалось уже давно сделать Политехникум одной из лучших высших школ Европы и, в частности, добиться высокого - не ниже, чем в университетах, - уровня преподавания физико-математических дисциплин. Материальная независимость, самостоятельная кафедра, сохранившиеся воспоминания о Цюрихе - может быть, эти мотивы не были решающими для Эйнштейна, но они были решающими для Милевы. Она давно рвалась обратно в Швейцарию.

Уезжая из Праги, Эйнштейн забыл написать заявление в Вену, и его уход остался неоформленным, что очень тревожило каких-то чиновников министерства просвещения. Через несколько лет Эйнштейн узнал об их тревогах и поспешил выполнить все, что требовалось.

В Цюрихе Эйнштейна с нетерпением ждали не только в Политехникуме. Его ждали старые друзья, особенно Марсель Гроссман. Эйнштейн тоже хотел встретиться со старым другом. Он и теперь искал его помощи. Эйнштейн и Гроссман вспомнили, как двенадцать с лишним лет тому назад Гроссман избавлял своего друга от необходимости посещать лекции по математике. Сейчас эта система давала плоды, которые тревожили Эйнштейна. Он знал теперь, что именно ему нужно среди различных разделов математики. Речь шла о проблемах кривизны линий и поверхностей. Пик в Праге указал Эйнштейну на некоторые понятия геометрии, которые могли помочь ему справиться с трудностями при дальнейшем обобщении теории относительности. Но этих указаний было недостаточно. Нужно было применить понятие кривизны не только к линиям и поверхностям, но и к трехмерному пространству и к четырехмерному пространству-времени. Помимо глубины и ясности геометрического мышления, помимо определенных физических задач, подсказывавших выбор математических приемов, для этого требовалась обширная и систематическая математическая подготовка.

Гроссман вступал с Эйнштейном в длительные беседы, вводил его в круг математических приемов, пригодных для решения новой физической задачи. Затем оп уже один углублялся в математические детали проблемы. Работа перемежалась, как в студенческие годы, спорами о значе-

158

нии физики и математики. Они оба понимали, что наступил период использования в физике таких разделов математики, которые возникли из потребности согласовать и обосновать "рабочие" разделы. Теперь любая, самая далекая, на первый взгляд, область математики могла оказаться "рабочей", и ограничиваться областями, уже получившими применение в физике, значило оставаться безоружным при разработке новых физических теорий.

Беседы с Гроссманом отражали существенный поворот во взаимоотношениях математики и физики. Мы знаем уже, что Эйнштейн различал в эволюции математики период, когда математика рассматривалась как полуэмпирическая наука, и следующий период, когда она приобрела независимый от физики характер, вызвавший иллюзии априорного или условного происхождения математических положений. Третий период наступил, когда математика, не возвращаясь к примитивному эмпирическому представлению, выявила свою связь с физическим экспериментом, когда эксперименту суждено было решать вопрос о реальном существовании математических построений. Позже мы познакомимся с общей теорией относительности, где эти фразы приобретают более конкретный вид, потому что в общей теории относительности физические процессы в пространстве и времени как раз и рассматриваются как изменения геометрических свойств пространства и времени. Именно об этих проблемах и шла речь в цюрихских беседах Эйнштейна и Гроссмана.

В цюрихском Политехникуме Эйнштейн читал лекции в течение зимнего семестра 1912-1913 гг. (аналитическая механика, термодинамика), летнего семестра 1913 г. (механика сплошных сред, кинетическая теория тепла) и зимнего семестра 1913/14 г. (электричество и магнетизм, геометрическая оптика). Кроме того, он руководил еженедельными коллоквиумами по физике. О них рассказывает Макс Лауэ, который в 1912 г. приехал в Цюрих в качестве экстраординарного профессора.

"Каждую педелю Эйнштейн проводил коллоквиум, на котором сообщалось о новых трудах по физике. Это происходило в Политехникуме, куда приходили и все доценты, а также много студентов-физиков из университета... После коллоквиума Эйнштейн со всеми, кто хотел к нему присоединиться, отправлялся ужинать в "Кронегалле". Теория относительности была в центре дискуссий... Осо-

159

бенно оживленными были эти дискуссии летом 1913 г., когда темпераментный Пауль Эренфест посетил Цюрих. Как сейчас вижу перед собой Эйнштейна и Эренфеста в сопровождении целого ряда физиков, поднимающихся на Цюрихскую гору, и слышу ликующий голос Эренфеста: "Я понял"" [16].

16 Seelig, 132.

Общение и дружба с Эренфостом продолжались двадцать лет - до смерти Эренфеста в 1933 г. - и имели большое значение для Эйнштейна. Это был один из крупнейших физиков поколения, столь богатого талантливыми теоретиками, и в то же время человек исключительной скромности, чуткости и доброты. Он был одним из самых близких друзой Эйнштейна, может быть, самым близким среди европейских физиков.

Из Цюриха Эйнштейн осенью 1913 г. ездил в Вену на конгресс естествоиспытателей. Он сделал на этом конгрессе сравнительно популярный (рассчитанный не только на физиков) доклад, посвященный общей теории относительности. Теория еще не была построена, но Эйнштейн высказал общие соображения, которые можно привести ужо здесь, не дожидаясь предстоящего нам знакомства со смыслом общей теории относительности.

Эйнштейн говорил в Вене об этой теории как о новой теории тяготения. Он сравнивает теорию тяготения с теорией электричества в ее развитии. В XVIII в. об электричестве знали только то, что существуют заряды, которые притягивают или отталкивают друг друга обратно пропорционально квадрату расстояния. В области учения о тяготении мы знаем, в сущности, нечто аналогичное этому - закон взаимодействия тяжелых тел и только. Но учение об электричестве за полтора века подошло уже к понятию электромагнитного поля. Пора было перейти к более сложным представлениям и в учении о тяготении.

Речь идет, таким образом, о том, чтобы рассматривать тяготение как некоторую характеристику пространства. Эйнштейн приближался в эти годы к представлению о тяготении как об особом геометрическом свойстве пространства... Не следует, однако, забегать вперед и называть уже сейчас геометрическое свойство пространства, которое Эйнштейн отождествил с тяготением.

160

Во время пребывания в Вене Эйнштейн посетил Эрнста Маха, который жил в окрестностях Вены. Маху исполнилось 75 лет, он был разбит параличом. Эйнштейн увидел старика с всклокоченной бородой, с добродушным и хитроватым выражением лица. Франк, описывая эту встречу, отмечает, что Мах напоминал старого крестьянина из славянской страны... [17]

Содержание разговора с Махом Эйнштейн вспоминал в 1955 г. в беседе с Бернардом Коэном. По-видимому, спор шел в основном о существовании молекул и атомов [18].

17 См.: Frank, 104.

18 См.: Cohen В. An interview with Einstein. - "Scientific American", July 1955, v. 193, p. 69-73.

Немного позже, после изложения общей теории относительности, нам станет яснее, каким колоссальным интеллектуальным напряжением были отмечены годы ее разработки. У всех встречавших Эйнштейна оставалось впечатление почти непрерывной работы мысли у него, работы не прекращающейся и во время бесед с друзьями, и в семейном кругу.

Семейная жизнь Эйнштейна между тем шла к неизбежному финалу: Эйнштейн и Милева Марич становились все более далекими.

Берлин

...Я имею в виду свою склонность к долгому покою и тихим размышлениям, страстную и врожденную любовь к миру, к чуждым войне занятиям...

Нума Помпилий (Плутарх. "Сравнительные жизнеописания")

Революция в науке и в технике, произведенная электричеством, во многих отношениях была подготовкой и репетицией происшедшей на полвека позже атомной революции. В начале столетия возникали новые отрасли техники (такие, как радиотехника, рентгенотехника, применение вакуумных электротехнических приборов для преобразования тока и т.д.), в которых физический эксперимент стал необходимым и постоянным условием производства. Крупные электротехнические фирмы первыми были вынуждены создавать физические лаборатории, где велись исследования без заранее сформулированной прикладной задачи. В технике все большее значение начали приобретать наряду с ожидаемыми результатами неожиданные результаты исследований. Ограничиться прикладными, заранее сформулированными задачами значило закрыть путь к принципиально новым, выходившим за рамки известного практическим открытиям. Поэтому General Electric Company пригласила выдающегося электрофизика Карла Штейнмеца заведовать ее лабораториями с правом заниматься чем угодно, лишь бы все чаемые и нечаянные плоды доставались фирме. Такие случаи встречались все чаще. Создавались институты, в которых сосредоточивалась теоретическая мысль, становившаяся все более частым источником принципиально новых тенденций технического прогресса. Такими институтами оказывались в зависимости от условий и традиций университетские кафедры, лаборатории высшей технической школы, учреждения, входившие в состав академий наук и научных обществ, а в США - частные институты.

162

Появлялись и специальные государственные или созданные на частные средства по инициативе правительств научные учреждения, в которых теоретические исследования должны были принести несомненный, но заранее не могущий быть определимым практический эффект. Германская империя, стремившаяся вырвать у Англии первенство в научно-техническом и промышленном развитии и пресловутым "бронированным кулаком" переделить рынки, источники сырья и сферы вывоза капитала, особенно энергично хотела бросить на чашу весов промышленного и военного соперничества реальную силу теоретической мысли.

Финансовая олигархия сочувственно отнеслась к замыслу германского императора, объявившего о создании общества и института, которым будет присвоено имя коронованного инициатора. "Общество кайзера Вильгельма" должно было состоять из банкиров и промышленников, финансирующих институт. Каждому из них присваивались звание сенатора, специальная мантия и право участвовать в торжественных обедах в присутствии кайзера. Кто из верноподданных мог устоять против подобной перспективы?

Институт кайзера Вильгельма проектировался в составе наиболее крупных ученых, со сравнительно большим жалованием, без педагогических обязанностей, с правом вести любые индивидуальные исследования. Не без основания предполагалось, что эти исследования принесут весьма эффективные плоды. Конкретные заботы о подборе ученых взяли на себя Планк и Нернст.

Макс Планк - гениальный создатель квантовой теории, физик с необычайно широким диапазоном научных интересов и тонкой интуицией, не только первым оценил внутреннюю стройность и красоту теории относительности. Он понял или почувствовал (трудно сказать, превалировала ли здесь логика или интуиция), что теория Эйнштейна надолго определит направление физических исследований, которые принесут неопределимые заранее, но безусловно важные результаты для всех областей науки и культуры. Планк пользовался непререкаемым авторитетом в академических кругах - не только научным, но и моральным. Эйнштейн очень любил этого стройного,

163

суховатого человека, романтическая душа которого раскрывалась, когда он садился за рояль и, быть может, но в меньшей степени, когда он садился за письменный стол, где из-под его пера выходили статьи, исполненные самой романтической преданности науке.

Планка уважали и в официальных кругах. Аристократическое происхождение, органическая приверженность условностям, сдержанные манеры, выправка импонировали офицерско-чиновничьей среде.

Кумиром буржуазии был Вальтер Нернст - один из самых крупных химиков XX в., человек поразительной активности и энергии, организатор но самой природе и вместе с тем глубокий и оригинальный мыслитель.

Планк и Нернст приехали к Эйнштейну в Цюрих со следующим предложением. Эйнштейн назначается директором Института кайзера Вильгельма. Его избирают в Прусскую Академию наук. Он становится профессором Берлинского университета и читает лекции в минимальном объеме, который он сам определит. Если Эйнштейн пожелает, он может принять участие в работе других институтов и корпораций. Но никаких обязательств на него не накладывают, он может разрабатывать любые проблемы.

Эйнштейн понимал, что согласие позволит ему сразу же целиком уйти в те размышления, которые в это время были направлены на обобщение теории относительности. Кроме того, в Берлине были выдающиеся физики и математики. В разговоре с Нернстом и Планком он услышал и этот аргумент. Когда речь зашла о теории относительности, Эйнштейн заметил, что, по мнению Ланжевена, в мире всего двенадцать человек понимают смысл теории. Из этих двенадцати - восемь находятся в Берлине, ответил Нернст. Но все же Эйнштейн колебался. Ему не хотелось покидать мирную и терпимую атмосферу Цюриха и столкнуться с воинственной, чванной и нелояльной атмосферой Берлина. А столкнуться придется, несмотря на изолирующую академическую среду, - это Эйнштейн понимал хорошо.

Разговор окончился согласием Эйнштейна, но не окончательным. Эйнштейн попросил немного времени, чтобы подумать. Характерная для Эйнштейна постоянная игра (такая далекая от гелертерской респектабельности): Нернст и Планк должны были приехать снова в Цюрих; если Эйнштейн, встречая их на вокзале, будет держать в руках букет из красных цветов, значит он согласен переехать в Берлин. Белые цветы означали бы отказ.

164

Когда Нернст и Планк вновь оказались на перроне цюрихского вокзала, Эйнштейн встретил их с красными цветами.

Милева осталась в Цюрихе. Разрыв уже назрел, и, уезжая в Берлин, Эйнштейн оставил семью окончательно.

В Берлине основной формой научного общения Эйнштейна с новой средой стал еженедельный физический семинар. Он существовал все годы пребывания Эйнштейна в Берлине. На семинар приходили, кроме Эйнштейна, физики, ставшие его друзьями. Кроме Нернста и Планка, здесь бывал Макс Лауэ, открывший в 1912 г. вместе со своими учениками дифракцию рентгеновских лучей - одну из самых важных экспериментальных основ новых представлений о структуре вещества. Лауэ принадлежали и серьезные теоретические работы, в частности систематическое и глубокое изложение теории относительности. Семинар посещали известные физики Густав Герц, Франк, позднее Шредингер. Слава последнего была впереди, с его именем мы вскоре встретимся при изложении созданных в 1924-1926 гг. основ квантовой механики. На семинаре одно время бывала Лиза Мейтнер; ее имя прогремело в конце тридцатых годов в связи с открытием деления урана.

Все участники семинара сохранили о нем светлое воспоминание, и в этих воспоминаниях выделялась фигура Эйнштейна. Дело было не только в том, что на собраниях семинара из его уст исходили самые глубокие идеи, которые когда-либо приходилось слышать. Непринужденная и задушевная манера Эйнштейна, легкость, с которой он входил в круг идей своих товарищей, задавали тон на семинаре (это была высшая лояльность и высшая научная отзывчивость, но она была прерогативой гения). Но на официальные заседания, в частности на собрания Прусской Академии наук, новый академик почти не ходил. Он рассказывал - и здесь его юмор терял обычную незлобивость - об этих заседаниях, где дискуссии по специальным и частным вопросам ведутся в присутствии спящих, но сохраняющих достойный и значительный вид коллег, о неожиданном подъеме интереса, когда решаются вопросы, не относящиеся к науке и дающие повод для темпераментных выступлений ученых, которые многим обязаны науке, но которым наука не обязана ничем [1].

165

Раздражали Эйнштейна и требования профессорского этикета. В мае 1914 г. он писал в Цюрих Гурвицу:

"Жизнь здесь вопреки ожиданиям налаживается неплохо; мой душевный покой нарушают только тем, что меня муштруют в смысле всякой чепухи, например одежды, в которую я должен облечься, иначе некие дяденьки причислят меня к отбросам общества" [2].

Первое время жизнь Эйнштейна в Берлине была сравнительно спокойной. Он приобретал все новых друзей и пока не замечал врагов. Сознание его было поглощено проблемой относительности ускоренных движений, проблемой тяготения, проблемой зависимости геометрических свойств пространства от происходящих в пространстве событий. Об этом он думал всегда. Филипп Франк вспоминает, как однажды, приехав в Берлин, он условился с Эйнштейном вместе посетить астрономическую обсерваторию в Потсдаме. Они решили встретиться в назначенное время на одном из мостов. Франк, у которого было много дел, беспокоился, что не сможет оказаться точным. "Ничего, я подожду на мосту", - сказал Эйнштейн. "Но ведь это отнимает ваше время". "Нисколько! Свою работу я могу делать, где угодно. Разве я меньше способен обдумывать свои проблемы на мосту, чем дома?" Его мысли, продолжает Франк, были подобны потоку. Любой отвлекающий разговор был подобен небольшому камню в могучей реке, неспособному повлиять на ее течение [3]. Поэтому постоянная и крайне целеустремленная работа мысли не мешала проявляться природной общительности Эйнштейна.

1 Frank, 109.

2 Seelig, 247.

3 Frank, 118-119.

Иногда эта общительность приводила к неожиданному афронту. Однажды Эйнштейн узнал, что его берлинский коллега, специалист по психологии, профессор Штумпф интересуется ощущениями и представлениями, связанными с пространством. Соблюдение этикета здесь могло совпасть с интересной беседой, и Эйнштейн отправился с утренним визитом. Встретившая его горничная сказала,

166

что господин тайный советник ушел, и спросила, что нужно передать. "Ничего, я зайду днем, а пока прогуляюсь по парку". В два часа дня он снова зашел и смущенная горничная сообщила, что Herr Geheimrat лег отдохнуть после завтрака, так как Эйнштейн не предупредил его о своем визите. "Ну, что ж, я приду позже". После второй прогулки Эйнштейн вернулся к четырем часам дня. На этот раз тайный советник был дома, и Эйнштейн заметил горничной: "Вот видите, в конце концов терпение и настойчивость всегда вознаграждаются". Супруги Штумпф были крайне польщены визитом и собрались повести приличествующий разговор. Но Эйнштейн принялся говорить о понятии пространства. Бедняга Штумпф, не обладавший физической и математической подготовкой, ровно ничего не понял и не мог вставить в беседу ни одного слова. Минут через сорок Эйнштейн обнаружил, что ведет беседу с самим собой, а визит затянулся дольше, чем было положено. Он быстро ретировался.

Подобные случаи, разумеется, не нарушали душевного мира Эйнштейна. С отсутствием интереса и понимания он сталкивался и в профессионально близкой среде. Что его тревожило - так это люди, которые казались созданными для выполнения любых намерений агрессивного государства. Эйнштейн помнил по Мюнхену этих верноподданных империи. Теперь, по его признанию, он пугался "холодных блондинов, чуждых понимания и не допускающих сомнений". Приближались события, позволившие "холодным блондинам" выйти на авансцену. Через полгода после приезда Эйнштейна в Берлин началась война.

В "Mein Weltbild" Эйнштейн написал о своем отношении к войне и милитаризму.

"Я глубоко презираю тех, кто может с удовольствием маршировать в строю под музыку, эти люди получили мозги по ошибке - им хватило бы и спинного мозга. Нужно, чтобы исчез этот позор цивилизации. Командный героизм, пути оглупления, отвратительный дух национализма - как я ненавижу все это. Какой гнусной и презренной представляется мне война. Я бы скорее дал разрезать себя на куски, чем участвовать в таком подлом деле. Вопреки всему я верю в человечество и убеждеп: все эти призраки исчезли бы давно, если бы школа и пресса не извращали здравый смысл народов в интересах политического и делового мира" [4].

167

В июле 1914 г. улицы Берлина заполнились марширующими шеренгами, а тротуары - толпами восторженных поклонников кайзера и армии. Эйнштейн вскоре узнал о проявлениях шовинизма и в других странах. В августе он писал Эренфесту:

"В обезумевшей Европе творится нечто невероятное. Такое время показывает, к какой жалкой породе животных мы принадлежим. Я тихо продолжаю мирные исследования и размышления, но охвачен жалостью и отвращением" [5].

В начале декабря - новое письмо Эренфесту, полное гнева и возросшего отвращения к националистическому вырождению и войне. "Международная катастрофа тяжелым грузом легла на меня как на интернационалиста. Живешь в "великую эпоху" и с трудом примиряешься с фактом своей принадлежности к отвратительной разновидности животных, гордящейся своей якобы свободной волей".

Одновременно - письмо Лоренцу о поддержке коп-тактов между учеными воюющих стран. В конце письма строки: "Если контакты будут сорваны, это будет означать, что людям необходима идиотская фикция, побуждающая их к взаимной ненависти. В свое время это была религия, теперь - государство" [6].

4 Comment je vois le monde, 12.

5 Einstein on peace. Ed. by Otto Nathan and Heinz Norden. Pref. by Bertran Russel. Simon Schuster. New York, 19G0, p. 36-37. Далее обозначается: Einstein on peace, с указанием страницы.

6 Einstein on peace, 11.

С началом войны сторонники революционного интернационализма ушли в подполье. Эйнштейн ощущал какой-то тягостный кошмар. В окружающей его академической среде внезапно раскрылись черты зоологического шовинизма. Люди, которые еще недавно казались ему безобидными филистерами с мирными наклонностями и искренним уважением к мировой культуре, теперь упивались звуками военного марша, криками об уничтожении России, Франции, Англии, с восторгом сообщали друг другу о гибели тысяч людей. Тупые и злобные статьи и брошюры об исторической миссии Германии вытеснили

168

с их столов Лессинга и Шиллера. Оствальд говорил о подчинении Европы империи Гогенцоллернов как о величайшей задаче мировой истории и подписал обращение немецких ученых, проникнутое отвратительным пангерманизмом. Другие - и среди них Планк - ходили растерянные и повторяли с чужого голоса разговоры о "законных требованиях" Германии. Эйнштейн больше не мог, как раньше, свободно и сердечно общаться с коллегами. Не мог он и замкнуться и целиком отдаться физическим проблемам. Вокруг него, за вычетом нескольких ближайших друзей, не было единомышленников, сохранивших верность свободе и интернациональной солидарности. Деятельность революционных групп, выступавших против империалистической войны, не доходила непосредственно до Эйнштейна, но вскоре он нашел единомышленников в лице Ромена Роллана и группировавшихся вокруг Роллана ученых и писателей.

В марте 1915 г. Эйнштейн написал Роллану письмо, в котором предоставил себя в распоряжение созданной Ролланом антивоенной организации "Новое отечество". Он писал, что в Европе после трех столетий напряженной культурной работы религиозное безумие сменилось националистическим. Эйнштейн говорил об ученых, которые ведут себя так, будто у них ампутировали головной мозг. Замена разума зоологическими инстинктами у ученых была для апостола рационализма трагической катастрофой европейской интеллигенции.

Осенью 1915 г. Эйнштейн вырвался в Швейцарию, где жила Милева Марич и его дети, с которыми Эйнштейн хотел повидаться. Вместе со своим цюрихским другом Цангером он посетил жившего тогда в Швейцарии в Вевс Ромена Роллана. Эта встреча позволила Эйнштейну узнать, что во всех воюющих государствах существуют группы противников войны. Беседа с Ролланом произвела на него сильное впечатление. Эйнштейн почувствовал себя участником интернационального содружества, противостоявшего шовинистическому угару.

Ромен Роллан записал в своем дневнике:

"После обеда мы все время сидели на террасе отеля, выходящей в сад, где рои пчел вились над медоносным цветущим плющом. Эйнштейн еще молод, невысокого роста, лицо у него крупное и длинное. Волосы густые, слегка вьющиеся, сухие, очень черные, с проседью. Лоб

169

высокий, рот очень маленький, нос несколько большой и толстозатый, губы пухлые. Усы коротко подстрижены, щеки полные. Он говорит по-французски, подчас затрудняясь и вставляя немецкие слова. Эйнштейн очень живой, очень часто смеется. Порой излагает самые глубокие мысли в юмористической форме. Эйнштейн свободно излагает свои мысли о Германии - своем втором или даже первом отечестве. Ни один другой немец не говорил бы так свободно. И каждый на его месте страдал бы от духовной изоляции в течение этого ужасного года. Но Эйнштейн - нет. Он смеется. Он нашел способ продолжать научную деятельность. Речь идет о знаменитой теории относительности, о которой я не имел представления, а Эйнштейн о ней не упоминал. Но Цангер сказал мне на ухо: "Это величайшая со времен Ньютона духовная революция". Я спросил Эйнштейна, делится ли он своими мыслями с немецкими друзьями. Он ответил, что избегает этого и склонен пользоваться сократовским методом последовательных вопросов, приводящих к идейной встряске собеседников. "Но людям это не очень нравится", - добавил Эйнштейн" [7].

7 Seelig, 250-251.

Впоследствии, в 1926 г., когда отмечалось 60-летие Ромена Роллана, Эйнштейн писал о встрече в 1915 г.:

"Один-единственный раз я видел Вас своими глазами; Вы были тогда под свежим впечатлением разразившейся европейской катастрофы: одинокий мечтатель среди разъяренной толпы, понимающий происходящее, страдающий с людьми, страдающий из-за невозможности раскрыть им глаза и избавить их от горя. Вас никогда не удовлетворяло воздействие Вашего высокого искусства на избранные умы. Вы стремились помочь всем человеческим существам, которые испытывают так много страданий от того, что создано самими людьми. Темные страсти толкнули грубые, подчипепные государствам толпы к взаимному истреблению. Ослепленные, эти толпы бросаются друг на друга, мучают друг друга и делают это в общем без внутренних сомнений. Но есть люди - их немного, - которые не увлечены грубыми чувствами толпы, не подвержены грубым страстям и крепко держатся за идеал человеческой любви. Они несут тяжелый крест. Этих людей изгоняют из их среды, обращаются с ними как с

170

отверженными, если они не присоединяются к тому, против чего возмущается их сознание, и не будут трусливо молчать о том, что видят и чувствуют. Вы, высокочтимый мэтр, никогда не молчали. Вы страдали, боролись, и Ваша великая душа утешала людей. В это время, столь постыдное для нас, европейцев, стало очевидным, что мощь познающей мысли не защищает от малодушия и варварских чувств. Я верю, что благородные убеждения людей вырастают в академиях и в университетах не в большей степени, чем в мастерских, в среде рабочих - неизвестных, молчаливых людей из народа. Сегодня Вас приветствует содружество тех, для кого Вы являетесь сияющим идеалом, содружество одиноких людей, обладающих иммунитетом против эпидемий ненависти и стремящихся к прекращению войн как к первой задаче морального выздоровления человечества..." [8]

8 Seelig, 352-353.

Письмо показывает, как глубоко запечатлелись в душе Эйнштейна наблюдения и настроения 1915 г.: культивировавшееся моральное озверение, надежда на "рабочих - неизвестных, молчаливых людей из народа", позиция академической среды, интеллектуальный уровень которой не мог помешать малодушию, расовым предрассудкам и угару шовинизма.

Растлевающее влияние последнего все больше сказывалось в окружавших Эйнштейна академических кругах. Эйнштейн прочитал письмо группы немецких физиков, в котором рекомендовалось не ссылаться на работы английских ученых, превозносилась глубина немецкой науки по сравнению с поверхностными теориями англичан и французов. Подобные эксцессы пангерманизма заставляли Эйнштейна искать общества людей, сохранивших разум и совесть. Он все чаще ходил к своему двоюродному дяде Рудольфу Эйнштейну, жившему в Берлине с дочерью Эльзой. Эльза, которую Эйнштейн знал с детства, развелась с мужем и вместе с двумя дочерьми поселилась в Берлине у отца. Это была очень привлекательная, еще молодая женщина с мягкими манерами, с большим юмором и множеством черт и склонностей, общих для нее и для Эйнштейна. Позже, в 1919 г., Эйнштейн, получив развод, женился на Эльзе.

171

Наступил 1917 год. Осенью великие исторические события поставили перед многими учеными вопросы, которых раньше они не задавали себе: с кем они, как они относятся к новому общественному строю, как они представляют себе будущее человечества?

В среде европейской интеллигенции происходило политическое размежевание, все становилось отчетливым, исторический момент требовал ясной позиции. Для Эйнштейна не было вопроса, принять или не принять Октябрьскую революцию. Он увидел в ней начало преобразования общества на основе разума и пауки. Эйнштейн говорил о Ленине: "Люди этого типа - хранители и реставраторы совести человечества" [9].

9 Seelig, 319.

Общая теория относительности

В 1919 г. девятилетний сын Эйнштейна Эдуард спросил отца "Папа, почему, собственно, ты так знаменит?" Эйнштейн рассмеялся, потом серьезно объяснил: "Видишь ли, когда слепой жук ползет по поверхности шара, он не замечает, что пройденный им путь изогнут, мне же посчастливилось заметить это".

Л. Инфелъд

Внутренний и основной поток деятельности Эйнштейна и основное содержание его жизни после появления специальной теории относительности заключались в поисках более общей теории. Как мы видели, Эйнштейн считал искусственным выделение равномерно и прямолинейно движущихся систем из числа других систем. В равномерно и прямолинейно движущихся системах механические процессы происходят единообразно и не зависят от движения системы. В системах, движущихся с ускорением, механические процессы происходят неединообразно, они зависят от ускорения, ускорение вызывает в этих системах силы инерции, которые нельзя объяснить взаимодействием сил и которые свидетельствуют о движении системы, придавая этому движению абсолютный характер. Поэтому принцип относительности Галилея - Ньютона применим только к системам, движущимся прямолинейно и равномерно.

Специальная теория относительности утверждает, что в инерциальных системах не только механические, но и все физические процессы происходят единообразно. Но дело по-прежнему ограничивается инерциальными системами. Ускорение вызывает нарушение единообразного хода процессов в системе и демонстрирует свой абсолютный смысл. Можно ли представить события в ускоренных системах не нарушающими принципа относительности, т.е. не дающими абсолютных критериев движения? Можно ли обобщить принцип относительности, полностью доказанный для инерциальных систем, на ускоренные системы?

173

Положительный ответ был подсказан одной закономерностью, известной с XVII в.

Все тела обладают инерцией, все они оказывают сопротивление воздействующим на них силовым полям. Мера сопротивления называется инертной массой тела. Далее, тела обладают как бы восприимчивостью по отношению к силовым полям; например, электрически заряженные тела восприимчивы к электрическим полям, на них в той или иной мере действуют электрические силы притяжения и отталкивания. Мера "восприимчивости" называется зарядом тела. В отношении электрических сил тела обладают восприимчивостью, т.е. зарядом, не пропорциональным массе. Тело может обладать большой массой и незначительным электрическим зарядом, и наоборот. Тело, обладающее массой, может вообще не обладать электрическим зарядом.

Но есть поля, по отношению к которым восприимчивость тела всегда пропорциональна его массе. Это поля тяготения, гравитационные поля. Все тела в природе испытывают притяжение к другим телам. Во всех случаях "восприимчивость" тела к полю тяготения (ее можно назвать гравитационным зарядом или гравитационной массой) пропорциональна сопротивлению тела - его инертной массе. Чем массивнее тело, чем труднее изменить его скорость, чем больше его инертная масса, тем оно тяжелее, тем в большей степени на него действует притяжение к другому телу. Поэтому все тела независимо от их инертной массы испытывают одно и то же ускорение в данном гравитационном поле и падают вблизи поверхности Земли с одной и той же высоты с одной и той же скоростью (если не учитывать сопротивление воздуха).

Когда система тел приобретает ускорение, входящие г нее тела сопротивляются ускорению пропорционально их инертным массам. Это сопротивление выражается в толчке в сторону, противоположную ускорению системы. Такой толчок, иначе говоря - ускорение, направленное в сторону, противоположную ходу поезда, испытывают пассажиры, когда поезд ускоряет свой ход. Этот толчок приписывают силам инерции, пропорциональным инертной массе тела. Ускорение, вызванное гравитационным полем, пропорционально тяжелой массе. Поскольку те и другие массы пропорциональны, мы не сможем узнать, чем вызваны наблюдаемые ускорения тел, входящих в систему: ее ускорением или же полем тяготения.

174

Эйнштейн иллюстрировал указанную эквивалентность примером кабины лифта, движущейся с ускорением в пространстве, свободном от поля тяготения, и неподвижной кабины, находящейся в поле тяготения. Эти кабины противостоят ньютоновому ведру, демонстрирующему абсолютный характер ускорений. Представим себе, говорит Эйнштейн, кабину лифта, неподвижную, подвешенную на канате в поле тяготения, например в поле тяготения Земли. В кабине стоят люди, они испытывают давление на свои подошвы и приписывают это давление своему весу. Теперь представим себе кабину, не испытывающую действия сил тяготения, но уносящуюся с ускорением, противоположным по направлению тем силам, которые действовали на кабину в первом случае. Ускорение кабины вызовет в пей процессы, не отличающиеся от процессов, вызванных в первом случае тяготением. Силы инерции прижмут к полу подошвы находящихся в кабине людей, натянут веревку, на которой подвешена гиря, и т.д.

Никто не сможет сказать, что является причиной процессов, происходящих в кабине: ее ускоренное движение или действующие на нее силы тяготения. Этот пример иллюстрирует принцип эквивалентности. Так Эйнштейн назвал неразличимость динамических эффектов ускорения и тяготения. Из принципа эквивалентности следует, что ускоренное движение не имеет абсолютного критерия: внутренние эффекты, вызванные ускорением, можно приписать тяготению.

Чтобы распространить на ускоренные движения найденную в 1905 г. специальную теорию относительности, нужно было показать, что за счет тяготения могут быть отнесены не только динамические эффекты движения, но и оптические явления. Речь идет о следующем. Представим себе, что кабину лифта пересекает поперечный луч света. Он входит в одно окошечко и выходит в другое. Если кабина движется с ускорением, луч сдвинется в сторону, обратную движению кабины. Если же кабина неподвижна и находится в поле тяготения, то свет не сдвинется и продемонстрирует различие между физическими эффектами ускорения и тяготения и абсолютный характер ускоренного движения. Это произойдет, если свет не обла-

175

дает гравитационной массой. Но если свет обладает гравитационной массой, иными словами, если он подвержен действию поля тяготения, то под действием этих сил он испытывает ускорение. Чтобы допустить такое ускорение, нужно отказаться от основной посылки специальной теории относительности - постоянства скорости света Эйнштейн сделал это. Он ограничил специальную теорию относительности - принцип постоянства скорости света - областями, где гравитационными силами можно пренебречь. Зато он распространил принцип относительности, лежащий в основе специальной теории, на все движущиеся системы. Вывод о тяжести света, о наличии у света гравитационной массы можно было проверить наблюдением. Мы вскоре увидим, как это было сделано. Сейчас коснемся другого - соотношения "внешнего оправдания" и "внутреннего совершенства" общей теории относительности.

Исходные идеи этой теории были выведены из очень общих посылок - из пропорциональности инертной и тяжелой масс. В классической механике эта пропорциональность была необъяснимой особенностью гравитационных полей - ведь в случае других полей, например электрических, такой пропорциональности нет. Общая теория относительности включила указанную пропорциональность в систему связанных друг с другом закономерностей, в единую каузальную схему мироздания. Тем самым картина мира приблизилась к "внутреннему совершенству". Такую же роль сыграла ликвидация произвольного для "классического идеала" ограничения относительности инерциальными системами. В части "внешнего оправдания" она столкнулась, сначала теоретически, а потом и реально, с новым фактом - тяжестью света. Этот факт означал, что не только механические, но и оптические процессы в движущихся с ускорением системах подчиняются принципу относительности. Отсюда следует, что обобщению подвергается не классический принцип относительности, а теория, найденная Эйнштейном в 1905 г., что на все движения распространяются парадоксальные пространственно-временные соотношения.

Принцип эквивалентности сам по себе еще не приводит к относительности ускоренных движений в значительных пространственных областях. Вернемся к двум кабинам, из которых одна находится в поле тяготения и не-

176

подвижна, а другая движется с ускорением. Подвесим два груза на нитях к потолку первой кабины. Силы тяготения направлены к центру Земли; эти направления пересекаются в центре Земли, и поэтому грузы натягивают нити, строго говоря, не параллельно. Если мы подвесим грузы к потолку второй, ускоренно движущейся кабины, силы инерции натянут нити строго параллельно. В маленьких кабинах различие неощутимо, но оно достаточно, чтобы взять под сомнение эквивалентность тяготения и инерции для сколько-нибудь больших областей.

Все же Эйнштейну удалось доказать относительность ускоренных движений. Для этого он отождествлял тяготение с искривлением пространства-времени. Представим себе график, на котором по одной оси отложены пройденные телом расстояния в сантиметрах, а по другой, перпендикулярной первой, отложено прошедшее время в секундах. Если тело движется по инерции, то его движение будет на таком пространственно-временном графике изображаться прямой линией; если тело движется с ускорением - движение будет изображено кривой. Если все тела, включая световые кванты, искривляют в поле тяготения свои мировые линии, если искривляются все мировые линии, мы можем говорить об искривлении пространства-времени в целом.

Что это значит, выяснится после того, как мы приведем пример искривления двумерного пространства - некой поверхности.

Начертим на плоскости прямые, образующие треугольники. Измеряя суммы углов в этих треугольниках, мы неожиданно обнаруживаем, что в одной области эти суммы не равны двум прямым углам. Нам приходит в голову, что в этих областях пространство стало неевклидовым. Такое предположение нетрудно сделать наглядным; в указанных областях плоскость искривилась, стала кривой поверхностью, а на кривых поверхностях сумма углов треугольника не равна двум прямым углам. Гораздо труднее представить себе искривление трехмерного пространства или четырехмерного пространства-времени. Но мы можем это сделать, не связывая с кривизной пространства-времени ничего другого, кроме искривления всех мировых липий. Поскольку тяготение искривляет четырехмерные мировые линии всех без исключения тел, мы можем считать тяготение искривлением самого пространства-вре-

177

мени. В такой теории тяготения, или, что то же самое, в общей теории относительности Эйнштейна, определить, какая сила тяготения воздействует в данной точке пространства, в данный момент времени на единичную массу, это значит определить, какова кривизна пространства-времени в данной мировой точке, т.е. в данной пространственной точке, в данный момент времени. Если пространство-время в данной области не искривлено (поле тяготения пренебрежимо мало), мировая линия частицы будет прямой, т.е. частица движется прямолинейно и равномерно. Если действует гравитационное ноле (пространство-время искривлено), частица будет иметь здесь искривленную мировую линию.

Из общей теории относительности вытекает новое представление о Вселенной, новая космология. Эйнштейн рассматривал гравитационные поля различных тел как искривления пространства-времени в областях, окружающих эти тела. Тела, находящиеся на земной поверхности, вызывают небольшие искривления. Земля, искривляя пространство-время, заставляет Луну двигаться с ускорением. Солнце искривляет пространство-время, так что мировые линии планет кривые. Но помимо этого, быть может, пространство в целом, все мировое пространство отличается определенной кривизной?

Смысл понятия общей кривизны пространства можно пояснить аналогией с общей кривизной некоторого двумерного пространства, например с поверхностью нашей Земли. Путешествуя по этой поверхности, мы встречаем отдельные искривления - пригорки, холмы, горы; но наряду с ними мы знаем о кривизне поверхности Земли в целом, о том, что все это двумерное пространство является сферической поверхностью. Теперь возьмем четырехмерное пространство-время, т.е. совокупность мировых линий всех тел природы. Эти мировые линии сильнее искривляются вблизи центров тяготения. Но не обладают ли они в целом некоторой общей кривизной? Предпримем, по аналогии с путешествием по поверхности земного шара, путешествие по всему мировому пространству. Мировая линия, изображающая наше путешествие, будет кривой на некоторых участках, там, где мы пересекаем гравитационные поля планет, звезд и т.д. Планета вызывает небольшое искривление мировой линии, звезда - большее. Путешествуя в мировом пространстве, мы попадаем в

178

межгалактическую область, где тяготение незначительно и мировая линия выпрямляется. Затем она снова проходит через ряд четырехмерных пригорков и гор - новую галактику. Но существует ли здесь общая кривизна Вселенной в целом, аналогичная общей кривизне двумерной поверхности Земли? Двигаясь по кратчайшему пути между двумя точками поверхности Земли, т.е. по дуге меридиана или экватора, мы в конце концов опишем окружность и попадем в исходную точку. Соответственно, если мир в целом обладает кривизной, то мы вернемся в исходную мировую точку.

Такое предположение Эйнштейн отбросил. В самом деле, вернуться в исходную мировую точку - это значит покинуть некий географический пункт, скажем, в полдень 14 июля 1971 г. и через триллионы лет, обойдя Вселенную, вернуться в этот пункт опять же в полдень 14 июля 1971 г. Это невозможно, кривизна пространства-времени, замыкающая мировую линию в этой же мировой точке, не может существовать.

Эйнштейн предположил, что искривлено только пространство, а время не искривлено. Поэтому, отправившись из данного географического пункта по кратчайшему пути в путешествие по Вселенной, мы опишем замкнутую пространственную траекторию и вернемся в тот же пункт в иное время, скажем, в квадриллионном году нашей эры. Значит, мировое пространство конечно (в том же смысле, в каком конечно двумерное пространство - поверхность нашей Земли), а время бесконечно. Мы можем найти по аналогии двумерное пространство - поверхность, кривую и конечную в одном измерении, но прямую и бесконечную в другом измерении. Такова поверхность цилиндра.

Если мы проведем (по кратчайшему пути) линию вокруг цилиндра бесконечной длины, мы вернемся в ту же точку. Если мы проведем черту вдоль цилиндра, она будет прямой и бесконечной. Исходя из этой аналогии, гипотеза Эйнштейна об искривленном мировом пространстве и неискривленном времени была названа гипотезой цилиндрического мира.

В 1922 г. А. А. Фридман высказал предположение о том, что кривизна мирового пространства в целом меняется с течением времени. По-видимому, Вселенная расширяется. Это предположение подтверждается некоторыми астрономическими наблюдениями.

Подтверждение теории относительности

Не действуют ли тела на свет на расстоянии и не изгибают ли этим действием его лучей?

Ньютон

Идея гравитационной массы света и соответственного искривления светового луча под действием тяжелого тела - в его гравитационном поле - напоминает помещенный вопрос из "Оптики" Ньютона. Но аналогия здесь чисто внешняя [1]. Ньютон имеет в виду объясняющее дифракцию отталкивание света от тел, притом не зависящее от их массы. Высказанная в эпиграфе к главе "Фотоны" ньютонова формулировка корпускулярной теории света близка по существу к идее Эйнштейна - идея фотонов в некоторой степени возвращается к взглядам Ньютона. Но идея искривления лучей в искривленном пространстве-времени не имеет таких прецедентов.

Она не имеет и непосредственных экспериментальных истоков и входит в число открытий, подобных открытию Леверрье или включению еще не найденных элементов в таблицу Менделеева: в них теоретический расчет предшествует экспериментальному доказательству. Для Эйнштейна существование таких открытий было неопровержимым аргументом против любой - последовательной или непоследовательной - формы агностицизма, включая новейший позитивизм [2]. Генезис идеи искривления лучей в поле тяготения хорошо иллюстрирует эйнштейновскую схему "внутреннего совершенства" и "внешнего оправдания". Указанная идея возникла примерно следующим образом.

1 См. примечание С. И. Вавилова к этому месту из "Оптики": (Ньютон И. Оптика. Перев. С. И. Вавилова, изд. 2. М., 1954, с. 355).

2 Эйнштейн, 4, 298.

180

Специальная теория относительности покончила с эфиром как абсолютным телом отсчета и с абсолютным (т.е. независимым от пространственной системы отсчета) временем. Вслед за мгновенным дальнодействием Ньютона рухнула и следующая опора абсолютной одновременности - возможность синхронизации событий с учетом скорости движущихся систем относительно неподвижного эфира. Но вместо бесконечного неподвижного эфира осталось бесконечное пустое пространство, которое участвует в наблюдаемых процессах, - ускоренное движение в пустом пространстве вызывает динамические эффекты, силы инерции. Такое представление противоречит "классическому идеалу" - картине мира, в которой нет ничего, кроме движения и взаимодействия материальных тел. Эйнштейн ищет пути для устранения абсолютного движения, нарушающего каузальную гармонию бытия. Он находит этот путь, пытаясь устранить также не имеющее каузального объяснения совпадение гравитационных и инертных масс тел. Но чтобы пойти по этому пути, необходимо допустить наличие гравитационной массы света. Эйнштейн предполагает ее существование отнюдь не под давлением конкретного экспериментального результата. Он исходит из общей идеи, вытекающей из всей совокупности данных эксперимента и практики. В этом смысле общая теория относительности отличается от специальной теории, также исходившей из общих посылок, но подготовленной результатами опыта Майкельсона.

Отсюда различие в резонансе двух теорий Эйнштейна. Специальная теория объяснила уже известные факты, и ее ореол зависел от общности и естественности объяснения по сравнению с ранее выдвинутыми концепциями. "Внешнее оправдание" специальной теории было исходным фактом, оно не могло поразить современников. Напротив, общая теория первоначально обладала высоким и бесспорным "внутренним совершенством", и поразительным было наблюдение, в котором она обрела "внешнее оправдание". Такое наблюдение показало, помимо прочего, что рациональная мысль, исходящая из гармонии и познаваемости мира, приводит к достоверному представлению о действительности.

181

В самом начале 1917 г. известный английский астроном и физик Артур Эддингтон высказал очень важную для развития теории относительности мысль о возможности проверить непосредственным наблюдением, обладает ли свет гравитационной массой. Эддингтон принадлежал к числу наиболее активных участников разработки и популяризации идей Эйнштейна. Сохранился рассказ об одном забавном разговоре. Как-то некий собеседник сказал Эддингтону, что он входит в число трех ученых, действительно понимающих смысл теории относительности, и, заметив на лице ученого некоторое смущенное недоумение, стал уверять его, что это действительно так: "Нет, - ответил Эддингтон, - я просто спрашиваю себя, кого вы считаете третьим?.."

Эддингтон отличался удивительной - иные говорили, чрезмерной - научной фантазией и изобретательностью. На этот раз она привела к идее астрономических наблюдений, оказавших очень большое влияние на судьбу теории относительности. Если свет обладает гравитационной массой, т.е. весом, он неизбежно отклонится в сторону тяжелого тела, проходя мимо этого тела так же, как летящий над Землей снаряд отклоняется в сторону Земли и в конце концов падает на ее поверхность. Световой луч не упадет на Землю. Из теории тяготения Эйнштейна вытекает, что, проходя возле Земли, он отклонится в сторону (т.е. в сущности будет падать на Землю) так, что это останется незаметным. Луч отклонится в течение секунды (т.е. на пути, равном 300 000 километров) всего на 10 метров. Но, проходя возле более тяжелого тела, т.е. испытывая большее воздействие гравитационных сил, луч отклонится в большей степени. Вблизи Солнца отклонение будет в 27 раз большим, чем вблизи Земли. Если луч звезды, прежде чем попасть на Землю, пройдет вблизи Солнца, он отклонится, и на фотографии звездного неба изображение этой звезды окажется смещенным по сравнению с фотографией, сделанной в отсутствие Солнца в наблюдаемой части небосвода. Но когда Солнце на небе, звезды, в особенности близкие к его диску, нельзя ни увидеть, ни сфотографировать. Поэтому нужно фотографировать звезды, видимые вблизи диска Солнца (т.е. звезды, лучи которых проходят возле Солнца) во время солнечного затмения. Нужно было выбрать такое затмение, когда Солнце находится на пути лучей ярких звезд.

182

Именно такое затмение должно было произойти 29 мая 1919 г. Эддингтон начал подготавливать экспедицию в районы, где это затмение должно было быть полным. Решили послать две экспедиции: одну на остров Принчипе в Гвинейском заливе, другую в деревню Собраль в Бразилии.

Приехав в Бразилию, английская астрономическая экспедиция была встречена заметкой в бразильской газете, очень характерной для первого послевоенного года Газета писала: "Вместо того чтобы пытаться подтвердить немецкую теорию, члены экспедиции, находящиеся в столь близких отношениях с небом, позаботились бы лучше о дожде для этой страдающей от засухи страны" [3].

3 Frank, 138,

С дождями встретилась другая экспедиция, приехавшая в Гвинею (в пей участвовал сам Эддингтон). В день затмения с утра небо затянуло облаками, сквозь них едва просвечивало Солнце. Корона Солнца была заметна, но о фотографировании звезд нечего было и думать.

Незадолго до окончания полной фазы затмения облака рассеялись. Были засняты звезды, сиявшие вблизи короны. Когда фотографию сопоставили с другой, снятой в отсутствие Солнца на пути лучей звезд, было зарегистрировано смещение, предсказанное в общем теорией Эйнштейна. Над деревней Собраль в этот день небо было безоблачным. Во время затмения было сделано много фотографий. Когда снимки сопоставили с контрольными, сделанными в отсутствие Солнца, астрономов постигло разочарование: результаты расходились с результатами гвинейской экспедиции и с теоретическим прогнозом. Но вскоре выяснилось, что это случайность: Солнце нагрело приборы и вызвало искажение снимков. На тех фотографиях, которые не пострадали от такого искажения, смещение звезд соответствовало теории Эйнштейна. Эйнштейн узнал о результатах экспедиции Эддингтона в сентябре 1919 г. Лоренц сообщил ему телеграммой, что общую теорию относительности можно считать подтвержденной. Эйнштейн написал об этом матери. Открытка Эйнштейна, адресованная матери, начинается словами: "Радостные новости сегодня! Лоренц телеграфировал мне, что английская экспедиция доказала отклонение лучей света вблизи Солнца". Однако сообщение Эйнштейна было, по-видимому продиктовано желанием обрадовать мать. Для пего самого, как мы скоро увидим, результаты экспедиции Эддингтона не казались чем-то значительным.

183

Вскоре Эддингтон сделал доклад о результатах экспедиций в Гвинею и Бразилию на совместном заседании Королевского общества и Астрономического общества в Лондоне. Президент Королевского общества Дж. Дж. Томсон во вступительной речи сказал: "Это - открытие не отдаленного острова, а целого континента новых научных идей. Это величайшее открытие со времен Ньютона" [4].

Отчет Эддингтона и высказывания ученых стали сенсацией, распространившейся по всему миру. Люди чувствовали, что произошло какое-то грандиозное событие в науке. Такие термины, как "кривизна пространства", "ограниченность пространства", "тяжесть света" - были у всех на устах, хотя понимали их немногие. Дж. Дж. Томсон говорил: "Я должен признать, что никому еще не удалось выразить ясным языком, что в действительности представляет собой теория Эйнштейна". Он утверждал, что многие ученые оказались неспособными уяснить ее действительный смысл [5]. Вопреки поговорке и соответственно обычной практике непонимание теории считали аргументом против нее. Особенно сильные возражения вызывала идея конечной Вселенной.

Нужно сказать, что различие между идеей границ пространства и мыслью о конечном радиусе замыкающихся траекторий движущихся тел и световых лучей не было тогда достаточно уяснено. В одной американской газете высказывалось характерное требование, чтобы принципы логики и онтологии (т.е. основные представления о действительном мире) не пересматривались в свете сменяющих друг друга физических воззрений:

"Трудно объяснить, почему наши астрономы, кажется, считают, что логика и онтология зависят от их меняющихся взглядов. Теоретическая мысль получила высокое развитие гораздо раньше, чем астрономия. Математикам и физикам следует обладать чувством меры, но приходится бояться, что британские астрономы преувеличили значение своей области" [6]. Эта фраза о "преувеличении эначе-

4 Frank, 141.

5 Ibid., 140-141.

6 Ibid., 142.

184

ния своей области" совпадает, по существу, с очень распространенной и давней тенденцией. Догматическая мысль хотела бы застраховать основные представления о Вселенной (так называемую онтологию) от изменений, связанных с успехами конкретных областей знания. Эта тенденция насчитывает уже несколько столетий. В XVI в. Осиандер в предисловии к книге Коперника, а в XVII в. глава инквизиции Беллярмино в одном из писем советовали астрономам ограничиться прагматической ценностью новых астрономических воззрений и не претендовать на онтологическое значение своих открытий, не колебать картины мира в целом, не думать, что в открытиях содержится истина. В отличие от прошлого, догматическая мысль апеллировала теперь не к религиозным догматам, а к общественному мнению, "здравому смыслу", "очевидности" и т.д. Но общественное мнение не было единым. Неискушенный человек, услышав о кривизне пространства, не понимал выражения Эйнштейна, но по большей части был склонен считать это непонимание фактом своей биографии, а не биографии Эйнштейна. Профессиональные выразители общественного мнения, напротив, часто вменяли Эйнштейну в вину тот простой факт, что выводы из всего развития теории тяготения и абстрактной геометрии требуют для своего усвоения физической и математической подготовки, что новые идеи еще не нашли каких-то форм популярного изложения и что новая теория предъявляет очень высокие требования к смелости и широте научной мысли. Что особенно смущало адептов "очевидности", это широкое распространение симпатий к новым идеям. Тот же неискушенный человек, не претендуя на понимание теории относительности, ощущал в какой-то мере ее смелость и широту; самый факт обсуждения, казалось бы, очевидных положений представлялся ему весьма многозначительным. Сейчас, ретроспективно оценивая волну широкого и напряженного интереса к теории относительности и к личности ее автора, мы находим в ней симптомы весьма общих идейных сдвигов, крайне характерных для нашего столетия. Поэтому следует несколько подробное остановиться на этом знамении времени двадцатых годов.

185

Слава

Идеалами, освещавшими мой путь и сообщавшими мне смелость и мужество, были добро, красота и истина. Без чувства солидарности с теми, кто разделяет мои убеждения, без преследования вечно неуловимого объективного в искусстве и в науке жизнь показалась бы мне абсолютно пустой.

Эйнштейн

Слава тоже требует жертв, и если можно говорить о погоне за славой, то в этой погоне Эйнштейн, во всяком случае, играл роль дичи, а не охотника.

А. Мошковскип

В начале двадцатых годов Эйнштейн уже пользовался такой широкой известностью, какая еще не окружала ни одного ученого. Леопольд Инфельд высказал некоторые интересные соображения о причинах беспрецедентного роста популярности Эйнштейна после экспедиций 1919 г. и подтверждения общей теории относительности.

"Это произошло после окончания первой мировой войны. Людям опротивели ненависть, убийства и международные интриги. Окопы, бомбы, убийства оставили горький привкус. Книг о войне не покупали и не читали. Каждый ждал эры мира и хотел забыть о войне. А это явление способно было захватить человеческую фантазию. С земли, покрытой могилами, взоры устремлялись к небу, усеянному звездами. Абстрактная мысль уводила человека вдаль от горестей повседневной жизни. Мистерия затмения Солнца и сила человеческого разума, романтическая декорация, несколько минут темноты, а затем картина изгибающихся лучей - все гак отличалось от угнетающей действительности" [1].

1 Успехи физических наук, 1956, 59, вып. 1, с. 154-155.

За этими ассоциациями и противопоставлениями стояли иногда осознанные, а чаще интуитивные догадки о социальном эффекте теории Эйнштейна и новой физики в целом. Звездное небо не только уводило человека от горестной земли. Его исследование сулило победу разума

186

на земле. Такая победа означает не только расширение сведений о Вселенной, но и иные условия жизни людей. Покинув берег очевидности, наука должна была пристать к новым берегам. Какие плоды растут на этих берегах - это пока было неизвестно. Но можно было предполагать, что применение новых идей вызовет значительные сдвиги в технике. Наряду с неопределенной догадкой о расцвете производительных сил человечества существовало несколько более определенное предчувствие роли самой науки в борьбе за ее мирное применение. Человечество предвидело борьбу за мирное применение науки против разрушительного применения, борьбу, действительно разыгравшуюся через сорок лет. Люди надеялись, что наука поможет развеять ядовитые испарения шовинизма и реакции, которые уже не раз конденсировались в тучи военной грозы. Поколение, с энтузиазмом встретившее теорию относительности и ее подтверждение, было свидетелем эксцессов шовинизма, начиная с дела Дрейфуса, и знало, к чему они приводят. Люди знали об интернациональном характере науки, знали, что она по самому существу своему враждебна шовинизму и войне. "Существовала, - пишет Инфельд, - и еще одна причина, видимо важнейшая: новое явление предсказал немецкий ученый, а проверили его английские ученые. Физики и астрономы, принадлежавшие недавно к двум враждебным лагерям, снова работают вместе. Может быть, это и есть начало новой эры, эры мира? Тяга людей к миру была, как мне кажется, главной причиной возрастающей славы Эйнштейна" [2].

2 Там же, с. 155.

К этому следует прибавить, что очень многие знали о травле Эйнштейна, предпринятой реакционно-шовинистическими элементами. Это также привлекало к теории относительности и к личности ее творца интересы широких кругов. Существовала уже в те годы и другая линия столкновений, менее заметная, но существенная. Речь идет об антиинтеллектуализме, о проповеди бессилия и неполноценности разума по сравнению с мистическими озарениями. Эта проповедь еще не вышла на плац нюрнбергских парадов, до такого выхода оставалось 12-15 лет, и мало кто мог предвидеть, в какую клоаку вольется ручеек антиинтеллектуализма. Не уже тогда многим было ясно направление этого ручейка.

187

Факел войны гаснет в атмосфере рационального мышления и разгорается в атмосфере мистики. Даже не зная как следует содержания теории относительности, многие чувствовали, что она является апофеозом разума. Главной причиной энтузиазма, с которым встретили теорию относительности, была ее связь с революционными общественными идеями. Теория относительности была отражением революции. Разумеется, не в смысле зависимости содержания этой теории от общественных движений. Теория относительности но своему содержанию отражает природу, ее объективные законы и в этом смысле совершенно независима от развития общества. Но теория относительности, как и каждая научная теория, отражает объективные законы природы в определенном приближении, и мера этого приближения в каждый период, форма, в которой была высказана теория, ее социальный и культурный эффект - все, что характеризует пауку как исторический процесс, - все это получает объяснение в связи с характеристикой времени. Связи тут могут быть очень отдаленными, косвенными и неявными. Когда Энгельс проводил цепь исторических причин и следствий от механики Ньютона к французской революции, речь шла о неясных и отдаленных, но несомненных исторических связях. Когда мыслители XIX в. увидели "алгебру революции" в тяжелых периодах официального королевско-прусского философа, связь была неявной, но исторически более близкой. В начало XX в. исторический процесс приобрел слишком стремительный темп, чтобы связь науки и революции могла быть столь отдаленной и косвенной, как раньше. Революция бушевала, и теперь связи научных теорий с революционными идеями не могли оставаться неявными. Лишь в специальных проблемах мыслители могли приходить к существенным для революции выводам, сами того не зная и не привлекая внимания борющихся общественных сил. Широкие эпохальные обобщения не могли таить свои идейные выводы, эти выводы если не становились ясными, то интуитивно угадывались и самими учеными, и широкими кругами. Они угадывались и врагами революции. После экспедиции Эддингтона и роста популярности теории относительности один профессор Колумбийского университета писал:

188

"В течение прошедших лет весь мир находился в состоянии беспокойства умственного и физического. По всей вероятности, война, большевистская революция были видимым результатом глубокого умственного расстройства. Это беспокойство проявилось в стремлении отбросить испытанные методы государственного руководства в угоду радикальным и непроверенным экспериментам. Это же чувство беспокойства вторглось и в науку. Многие хотели бы заставить нас отбросить испытанные теории и взамен построить основу современного научного и механического развития во имя спекулятивной методологии в фантастических представлений о Вселенной" [3].

Вскоре началась прямая травля теории относительности, главным образом в Германии. Первоначально немецкие националисты поднимали на щит новую теорию как проявление "чисто германской" интеллектуальной мощи. В это же время англичане часто избегали напоминать, что теория относительности появилась в Германии. Если бы астрономические наблюдения дали иной результат, говорил Эйнштейн, все было бы иначе. В статье, напечатанной 28 ноября 1919 г. в "Таймсе", Эйнштейн писал:

"Вот пример относительности для развлечения читателей. Сейчас в Германии меня называют немецким ученым, а в Англии я представлен как швейцарский еврей. Случись мне стать bete noire, произошло бы обратное; я бы оказался швейцарским евреем для Германии и немецким ученым для Англии" [4].

3 Frank, 143.

4 Comment je vois le monde, 214.

Но вскоре Эйнштейн действительно стал bete noire и, соответственно, - швейцарским евреем в Германии, несмотря на подтверждение теории относительности. Да и сама теория перестала тешить национальное тщеславие. В Германии происходило небывалое обострение классовой борьбы. Началась деятельность "Консула" и других террористических организаций. В это время в националистической газете "Der Turmer" появилась статья "Большевистская физика". В ней говорилось: "...Поскольку профессор Эйнштейн признан новым Коперником, многие преподаватели университетов стали его поклонниками. Говоря без обиняков, мы имеем здесь дело с низкой научной сплетней, столь характерной для картины, которую представляет современный период, самый трагичный из всех политических периодов. В конечном счете незачем обвинять рабочих .за то, что они следуют за Марксом, если германские профессора следуют за измышлениями Эйнштейна" [5].

5 Frank, 160.

189

Некто Пауль Вейлавд создал специальную организацию с целью борьбы с влиянием Эйнштейна. Вейланд организовывал собрания, на которых выступал он сам с политическими нападками на Эйнштейна, а после него некоторые физики и философы пытались опровергать новую теорию. В это же время получили известность выступления Ленарда - крупного экспериментатора, ожесточенного противника теории относительности и яростного националиста (по его распоряжению в руководимой им лаборатории, например, термин "ампер" был заменен другим названием единицы тока по имени одного из немецких физиков). В выступлениях Ленарда можно было встретить все - от попыток объяснения результатов опыта Майкельсона с классических позиций до призывов к физической расправе с Эйнштейном. Не обошлось и без поисков истиппо германских истоков идеи изменения массы быстро движущихся тел. Ленард приписывал приоритет в этом открытии погибшему на войне талантливому теоретику Францу Газенёрлю.

Националистическая травля могла бы заставить Эйнштейна покинуть Германию. Кроме того, начавшаяся инфляция сделала положение Эйнштейна очень тяжелым: он должен был посылать деньги Милеве в Швейцарию, что при падающей марке стало почти невозможным. Но Эйнштейн не хотел нарушить обещания, данные когда-то Планку. Сложившаяся в Германии обстановка не казалась ему безнадежной. Падение монархического режима было в его глазах началом положительных сдвигов. В 1919 г. Эренфест усиленно уговаривал Эйнштейна переехать в Лейден. Эйнштейн отвечал:

"Я обещал Планку не покидать Берлин, пока обстановка здесь не ухудшится настолько, что сам Планк признает мой отъезд естественным и правильным. Было бы неблагодарностью, если бы я, не будучи вынужден, частично из-за материальных выгод, покинул страну, в которой осуществляются мои политические чаяния, покинул людей, которые окружали меня любовью и дружбой и для которых мой отъезд в период начавшегося упадка

190

показался бы вдвойне тяжелым... Я смогу уехать, если развитие событий сделает невозможным дальнейшее пребывание в Германии. Если дела пойдут иначе, мой отъезд будет грубым нарушением слова, данного Планку. За такое нарушение я бы упрекал себя впоследствии" [6].

Эренфест, сообщая Лоренцу о решении Эйнштейна, прибавил:

"Меня это письмо устыдило, но вместе с тем вызвало теплое и радостное чувство гордости за этого замечательного человека" [7].

6 Einstein on peace, 36-37.

7 Ibid., 651.

Оставаясь в Германии, Эйнштейн неизбежно должен был принимать на себя удары реакции. Вместе с тем он становился ближе к широким кругам, для которых его идеи представлялись знаменем рационалистического подхода к природе и к обществу. Это отношение широких кругов к Эйнштейну и его взглядам становилось все более явственным. Теория относительности оказалась в центре политической борьбы. Это еще более увеличивало ее популярность. Но анализ причин широкого интереса к теории относительности не может не коснуться самого содержания и смысла теории. В основе дела лежала отмеченная уже связь теории относительности с "классическим идеалом". Представление о мире как о совокупности движущихся одно относительно другого материальных тел за три столетия стало органическим, чуть ли не врожденным. Теперь эта картина освобождалась от неоднозначно связанных с ней и даже чуждых ей по духу понятий дальнодействия, абсолютного пространства и эфира как абсолютного тела отсчета. Но ценой этого освобождения был парадоксальный отказ от классического правила сложения скоростей. Тем самым теория подводила к представлению о достоверной, неопровержимой, экспериментально доказанной парадоксальности бытия. С этим связан "парадоксальный рационализм" - представление о гармонии мироздания, которая выражается в простых, но противоречащих традиционной "очевидности" соотношениях. Именно этот комплекс идей (мы находили его каждый раз, когда вглядывались во внутреннюю структуру теории относительности и в основное содержание миро-

191

воззрения Эйнштейна) просачивался через сравнительно широкий круг людей, знакомых с теорией относительности, в еще более широкие круги. При этом сохранялись общие выводы теории - убеждение во всемогуществе разума и объективности и гармонии мира, которые не могли не волновать людей в эпоху, когда разум и гармония противостояли мистике и хаосу в их решающем историческом столкновении. Дальше процесс приобретал характер цепной реакции: интерес к теории придавал ей общественное значение (и, в частности, толкал автора теории к общественным выступлениям), а это, в свою очередь, увеличивало популярность теории. Отметим, что ощущение неопровержимой достоверности парадоксальной теории, ощущение, в такой большой мере объясняющее ее общественный резонанс, зависело не только от подтверждения теории при наблюдении затмения 29 мая 1919 г., но и от позиции самого Эйнштейна - его абсолютной уверенности в том, что наблюдение не может не подтвердить теорию. Каковы бы ни были гносеологические идеи ученого, он неизбежно покидает платформу агностицизма (любую - феноменологическую, конвенциалистскую или связанную с априорной версией), когда ждет от эксперимента подтверждения выдвинутой теории. Но тут дело в степени его уверенности. На каком-то уровне стихийное, неосознанное представление о познаваемости внутренней структуры мира уже недостаточно. Абсолютная уверенность Эйнштейна в том, что наблюдения подтвердят теорию, была связана не только с математической корректностью ее аппарата, но и с сознательной, последовательной и постоянной презумпцией познаваемости мира. Когда Эйнштейн получил снимки, сделанные во время затмения, он выразил свое восхищение. Но, оказалось, он был восхищен техникой фотоснимков. Что же касается подтверждения теории, Эйнштейн не считал эту сторону дела существенной: иные результаты представлялись ему невозможными. Когда Эйнштейна спросили, как бы он отнесся к отрицательным результатам, ответ был таков: "Я бы очень удивился..."

Бертран Рассел вспоминал впоследствии отношение Эйнштейна к результатам наблюдений затмения 1919 г.:

192

"Он был заинтересован гораздо меньше, чем Эддингтон, и его отношение мне напомнило одну реплику Вистлера. Одна из поклонниц рассказала Вистлеру, как, увидев в натуре мост Баттерси, она убедилась, что он абсолютно не отличается от изображения на вистлеровской картине. "Что же, природе это удается", - ответил художник. По-видимому, Эйнштейн считал, что солнечной системе "удалось подтвердить предсказание" [8]. Разумеется, речь шла не об априорной схеме, в которую укладываются наблюдаемые явления. Здесь не было отхода от представления об объективных, независимых от познания закономерностях Вселенной, так же как и Вистлер не думал, что природа копирует его картины. "Удача природы" в обоих случаях означает такое сопоставление художественной интуиции и научного расчета с наблюдением, которое подтверждает объективный характер интуиции и расчета.

Но "удача природы" означает не только такое подтверждение, иначе она была бы не столько удачей природы, сколько удачей картины в одном случае и физической теории - в другом. Теория опирается не только на наблюдение ("внешнее оправдание"), но и на связь с более общим принципом ("внутреннее совершенство"), и когда внешнему оправданию удается совпасть с внутренним совершенством, наблюдению с рационалистическим критерием, - это удача для обоих полюсов познания.

Нужно также подчеркнуть, что позиция Эйнштейна ни в коей мере не выражала высокой оценки собственных расчетов. Вряд ли Эйнштейн вообще когда-либо останавливался на оценке своих интеллектуальных сил - подобные мысли не приходили ему на ум в течение всей жизни. Приведенный ответ выражал ту же презумпцию познаваемости и гармонии мира. Если описать мир в соответствии с данными эксперимента ("внешнее оправдание") и по возможности без произвольных допущений ("внутреннее совершенство"), то описание мира будет с известным приближением соответствовать объективной истине. Презумпция познаваемости и гармонии достигала в данном случае эвристической силы, свойственной гению. Она окрашивала вместе с тем и отношение Эйнштейна к своей работе, к науке, к ее ценности, к ее общественной функции.

193

8 Einstein on peace, XVI.

С ней связан и моральный облик Эйнштейна. На таком уровне уже не могло быть противоречия между интеллектуальной мощью и моральными устоями. Только обращенный к "внеличному", забывший себя (и именно поэтому неспособный забыть о людях) человек мог с такой гениальной свободой оперировать абстрактными понятиями, никогда не превращая эту операцию в независимое от эксперимента условное конструирование и никогда не сводя связь с экспериментом к феноменологическим рамкам "чистого описания". Слава, обрушившаяся на Эйнштейна, заставила его почувствовать ответственность ученого за судьбу человечества. В последнем счете эта слава была симптомом той беспрецедентной роли, которую приобрела наука в XX столетии и которая является тайной этого столетия.

Теперь "материнское чувство, обращенное на народные массы", о котором говорил Бальзак, превратилось в сознательное чувство ответственности за судьбы людей в условиях, подготовленных революцией в науке. Эйнштейна можно было бы назвать пророком атомной эры, если бы поза пророка подходила к его облику и если бы роль пророка не была исключена характером науки и общественного развития в XX в. Во всяком случае, он раньше других узнал, что энергия равна массе, умноженной на квадрат скорости света, и раньше других ученых почувствовал, что потенции науки обязывают ученого вмешаться в борьбу общественных сил, от которых зависит то или иное направление практических применений науки. Борьба общественных сил захватила Эйнштейна не на своем главном участке; последний находился далеко от него. Но тот участок, который был ближе всего к Эйнштейну, играл существенную роль; речь шла о мобилизации интеллигенции для борьбы против шовинизма. Эйнштейн не всегда мог разобраться в создавшейся здесь обстановке, но он занял место в строю. Эйнштейн не видел с достаточной ясностью тех сил, которые могли эффективно противостоять войне и шовинизму. Его пацифистская позиция была интуитивной. В 1920 г. в одной из бесед Эйнштейн говорил:

"Мой пацифизм - это инстинктивное чувство, которое владеет мной потому, что убийство человека отвратительно. Мое отношение исходит не из какой-либо умозрительной теории, а основано на глубочайшей антипатии к любому виду жестокости и ненависти. Я мог бы дать рационалистическое объяснение такой реакции, но это было бы рассуждением a posteriori" [9].

194

При Лиге Наций была создана Комиссия интеллектуального сотрудничества. Задачи ее были туманными, а деятельность малоэффективной. Эйнштейн был приглашен в 1922 г. вступить в эту организацию и ответил следующим письмом:

"Хотя я должен отметить, что мне не ясен характер деятельности этой комиссии, я считаю своим долгом последовать ее призыву, поскольку никто в такое время не должен отказываться от участия в усилиях, направленных на осуществление интернационального сотрудничества" [10].

9 Frank, 154.

10 Ibid.

В Комиссии интеллектуального сотрудничества Эйнштейн столкнулся с политическими тенденциями, заставлявшими его переходить от пацифизма как чисто инстинктивного отвращения ко всякой жестокости к четкой платформе борьбы против войны. В воспоминаниях о заседании Комиссии интеллектуального сотрудничества отразились и чисто личные черты Эйнштейна - вплоть до его отношения к музыке.

В 1923 г. Эйнштейн вышел из состава Комиссии интеллектуального сотрудничества. На него произвела тягостное впечатление позиция Лиги Наций во время оккупации Рура. Эйнштейн видел, что инстинктивный пацифизм не может противостоять силам войны. В 1923 г. Эйнштейн писал:

"Я убедился, что Лига не обладает ни силой, ни доброй волей, необходимыми для осуществления ее целей. Как убежденный пацифист, я чувствую себя обязанным порвать все отношения с Лигой".

В письме, направленном в один из пацифистских журналов, он высказался более определенно:

"Я сделал это потому, что деятельность Лиги Наций убедила меня, что ни одной акции, совершаемой господствующими группами, какой бы жестокой она ни была, Лига не смогла противостоять. Я удаляюсь потому, что Лига Наций в своей деятельности не только не воплощает идеал интернациональной организации, но практически дискредитирует эту идею" [11].

195

Итак, инстинктивный пацифизм уже не удовлетворяет Эйнштейна. Он ищет в деятельности Лиги Наций не только добрую волю, но и силу, противостоящую акциям, угрожающим миру. Эйнштейн не находит в Лиге Наций ни доброй воли, ни силы.

Чисто негативная позиция, однако, не могла удовлетворить Эйнштейна. С другой стороны, многие его единомышленники, особенно Мария Склодовская-Кюри, убеждали Эйнштейна, что в рамках Лиги можно содействовать интернациональному сотрудничеству ученых. Такое сотрудничество поможет всем людям отойти от национализма. Эйнштейн в это время много думал о научных идеях как о чем-то противостоящем шовинизму.

"Представители естественных наук, - писал он, - благодаря универсальности своих теорий и необходимости организованных международных связей склонны к интернациональному мышлению, располагающему к пацифизму... Научные традиции в качестве силы культурного воспитания должны открыть перед рассудком значительно более широкий кругозор и благодаря своей универсальности могут оказать мощное воздействие на людей, чтобы отвратить их от безрассудного национализма" [12].

11 Prank, 154-155.

12 Ibid., 155.

Эти идеи, навеянные событиями двадцатых годов, показывают, что Эйнштейн подходит теперь к науке как к большой силе, действующей в пользу мира на Земле. Он по-прежнему обращен всеми помыслами к науке. Но сама наука перестает быть убежищем, куда можно укрыться, чтобы не видеть разгула шовинизма, она становится фортом, откуда ведут наступление против шовинизма.

В дальнейшем деятельность Комиссии интеллектуального сотрудничества показала Эйнштейну, что солидарность ученых может быть действительной силой только в сочетании с прямой борьбой против центров военной агрессии и общественной реакции. В 1925 г. фашисты заменили представителя Италии в Комиссии интеллектуального сотрудничества министром юстиции в правительстве Муссолини. Мария Кюри заявила, что министр не может

196

войти в группу независимых представителей интеллигенции. Эйнштейн добавил, что таким представителем не может быть министр тоталитарного государства. Но некоторые члены Комиссии начали выражать опасение, что Италия выйдет из Лиги Наций, и Эйнштейн увидел, как пассивное неприятие войны сочетается на практике с примирением по отношению к силам войны и реакции.

Антонина Валлентен, встречавшаяся с Эйнштейном и его семьей в двадцатые годы, рассказывает в своей книге "Драма Эйнштейна" о его настроениях в Женеве во время сессии Комиссии интеллектуального сотрудничества.

Дружеские связи, научные интересы и музыка были для Эйнштейна большой поддержкой.

"Однажды вечером после особенно тяжелого для Эйнштейна заседания Комиссии он вместе с Марией Кюри сидел на скамье на берегу Женевского озера. Оба они в тяжелом молчании следили задумчивым взглядом за колебаниями светлой полосы на воде от фонаря, зажегшегося, когда сгустились сумерки. Внезапно разговор возобновился, но в глазах собеседников уже не было тоски. "Почему отражение в воде разбивается в этом месте, а не в другом?" - спросил Эйнштейн. Несколько суховатый голос Марии Кюри окрасился тоном, который соответствовал созерцательному тону Эйнштейна. Разговор перешел на законы физики, речь шла теперь о формулах оптики..." [13].

13 Vallentin A. Le drame d'Albert Einstein. Paris, 1957, p. 104.

Антонина Валлентен рассказывает далее, как Эйнштейн в тяжелые для него дни разочарований в деятельности Комиссии интеллектуального сотрудничества убегал от ранящих впечатлений бытия в мир музыкальных образов.

Однажды Комиссия в полном составе беседовала в ресторане на берегу озера, стараясь не касаться разногласий. Чувствовалось, что эти разногласия иной природы, чем столкновения научных концепций.

Сквозь шум голосов и звон тарелок пробивались звуки ресторанной музыки. В сознании Эйнштейна они постепенно заслоняли и все, что происходило вокруг, и впечатления дня. Эйнштейн подошел к скрипачу, взял у него скрипку и заиграл.

197

"Его лицо преобразилось, на нем появилась улыбка, черты смягчились, казалось, он мечтал и не замечал окружающего. Во всяком случае Эйнштейн не думал, какое зрелище представляет он на эстраде перед прикованными к нему глазами присутствующих. Эйнштейн был один. Он смывал с себя горечь общения".

Потом, когда стало совсем поздно и Эйнштейну напомнили об этом, он вернул скрипку со слабой извиняющейся улыбкой и ушел.

В двадцатые годы берлинская квартира Эйнштейна напоминала Ясную Поляну: сюда являлись люди со всех концов света, люди самых разнообразных профессий, интересов и взглядов, побуждаемые самыми различными мотивами, ищущие ответа на физические, математические, философские, моральные, религиозные, политические и даже чисто личные вопросы. К ним присоединились легионы любопытных: Эйнштейн вошел в число достопримечательностей Берлина, а его адрес - Габерландштрассе, 5 - в туристские маршруты. Некоторые посещения стали началом мимолетной, а иногда долгой дружбы и в конце концов ценных воспоминаний об Эйнштейне. Иногда воспоминания включают сведения о взглядах Эйнштейна по коренным вопросам. Органический демократизм Эйнштейна приводил к тому, что пришедший с какой-то просьбой студент выслушивал из уст автора новую, еще нигде не опубликованную концепцию. Концепции эти большей частью отражены в литературном наследии и письмах Эйнштейна. Основная ценность воспоминаний - в тех деталях быта, привычек, даже наружности, которые сейчас так дороги и, несомненно, останутся дорогими множеству людей. Приведем некоторые воспоминания. Теперь, когда нам известны основные особенности мировоззрения, интеллекта и склонностей Эйнштейна, детали укладываются в единый образ. Это, разумеется, не значит, что указанные детали могут быть выведены из внутреннего облика, подобно тому как Эйнштейн стремился и в идеале считал возможным вывести все детали картины мира из ее исходных принципов. Но Эйнштейн принадлежал к числу людей, у которых все личное и повседневное не только уходило на второй план, но и приобретало форму, подчиненную основному внеличному содержанию жизни; он сам приближался в этом отношении к своему идеалу научного познания, который так отчетливо высказан в автобиографическом очерке.

198

Нельзя переоценить роль Эльзы Эйнштейн в создании того уклада, который в наибольшей степени соответствовал склонностям Эйнштейна. Эльза не отгораживала его от людей и не слишком заботилась о комфорте. Ее собственная интеллигентность, общительность, скромные вкусы и глубокое уважение к чужим мнениям создали в доме атмосферу, соответствовавшую противоречивым, но внутренне гармоничным склонностям Эйнштейна - интересу к людям и стремлению к уединенной работе.

Несколько слов о доме Эйнштейна. Владелец его, уроженец России, давно уже был горячим поклонником ученого. Иметь Эйнштейна в качестве обитателя своего дома было для него венцом самых гордых замыслов. Эйнштейн снял квартиру из девяти комнат. В них, кроме Эйнштейна и Эльзы, жили две ее дочери - Ильза и Марго, а затем в течение некоторого времени - мать Эйнштейна. После смерти отца Эйнштейна она жила у своих родственников, а затем, больная, переехала в Берлин. Умерла она в 1920 г.

Дом был расположен в сравнительно новом районе западной части Берлина. Этот район назывался Баварским кварталом по наименованию улиц, носивших баварские названия. Широкие, прямые улицы, тенистые деревья и новые дома привлекали в этот квартал зажиточные семьи. Дом, в котором жил Эйнштейн, был похож на тысячи других берлинских домов. Перед домом был маленький сад со статуей святого Георгия, попирающего дракона [14].

14 См.: Garbedian H. Albert Einstein. New York, 1939, p. 110-112.

В квартире Эйнштейна все было просто. Светлые обои в цветах, семейные портреты и репродукция картины, изображающей Фридриха Великого с двумя собаками, пианино в углу - все как и в тысяче других домов. Только библиотека указывала на профессию хозяина. Посетитель, ожидавший увидеть в обстановке дома отражение личности Эйнштейна, был бы разочарован, если бы затем ему не удалось попасть наверх. В угловой башенке находились две небольшие комнаты, отделенные лестницей от остальной квартиры. Это были кабинет Эйнштейна и вторая комната, где стоял круглый стол, покрытый красной с белым тканью. На столе кипы бумаги, брошюр

199

и много табачного пепла. Два стула с соломенными сидениями, кушетка и у противоположной стены полки с книгами, журналами и двумя толстыми библиями. На полке стояла также статуэтка, сделанная Марго и изображавшая старого еврея с невероятной шевелюрой. Происхождение этой статуэтки таково. У Эйнштейна начали выпадать волосы, и Эльза посоветовала для их укрепления есть побольше лука. Эйнштейн последовал ее совету. Марго изготовила статуэтку, сделала надпись "Рабби Цвибель" (Zwiebel - лук) и сказала Эйнштейну: "Такую копну волос и бороду до пояса приобретает человек, поедающий лук". Эйнштейн очень любил статуэтку.

Эта статуэтка - символ простой, дружеской и проникнутой юмором атмосферы в семье - находилась среди вещей, оставшихся от прежних владельцев. Эйнштейну они не мешали, чужие вкусы никогда не вызывали у него раздражения. На столе стоял маленький телескоп. Когда гости спрашивали о назначении телескопа, Эйнштейн отвечал: "Нет, это не для звезд. Телескоп принадлежал бакалейщику, ранее жившему здесь. Я его берегу как игрушку". Когда же Эйнштейна спрашивали, где его инструменты, он, улыбаясь, показывал на свой лоб. Однажды в ответ на вопрос о его лаборатории Эйнштейн предъявил свою авторучку.

Вставал Эйнштейн около восьми часов утра. В домашних туфлях и халате, пока наполнялась ванна, он садился за пианино. Когда жена говорила: "Готово, Альбертль", он проходил в ванную, а Эльза спешила закрыть за ним дверь, так как он часто забывал сделать это сам. После завтрака он набивал трубку и уходил в кабинет.

Эйнштейну часто задавали вопрос, сколько часов он работает, и он всегда затруднялся ответить, потому что для него работать значило думать. Иногда же он сам спрашивал кого-нибудь из друзей: "Сколько часов в день вы работаете?" - и когда получал ответ - восемь или десять, пожимал плечами и говорил: "Я не могу так долго работать. Я не могу работать больше четырех - пяти часов в день, я не трудолюбивый человек".

Когда Эйнштейн уходил в кабинет, Эльза садилась разбирать корреспонденцию. Письма приходили со всего света, на всех языках, сотни писем, которые швейцар приносил в больших корзинах. Писали ученые, государственные деятели, лидеры организаций и обществ, рабо-

200

чие, безработные, студенты. Было много писем, содержавших просьбы о помощи или совете, предложения услуг. Молодая женщина предлагала свои услуги в качестве "космической созерцательницы". Изобретатели писали о новых машинах, родители - о детях, которым дали имя Альберт, сигарный фабрикант сообщал, что назвал новый сорт сигар "Относительность".

Эльза сортировала письма. Одни оставляла без ответа, на некоторые отвечала сама, остальные готовила для просмотра Эйнштейну. Эта работа отнимала у нее добрую половину дня, а иногда и весь вечер.

Письма очень досаждали Эйнштейну, несмотря на созданный Эльзой фильтр. В 1920 г. Эйнштейн жаловался: "Никогда я не был силен в слове "нет". Теперь, когда газетные статьи и письма непрерывно спрашивают, приглашают и требуют, мне спится по ночам, что я поджариваюсь в аду и наш почтальон превратился в черта, который орет на меня и бросает мне в голову новые связки писем за то, что я не ответил на старые.

Прибавьте к этому болезнь моей матери и наступивший для меня "период величия", т.е. множество бесцельных заседаний. В целом я стал простой вязанкой самых убогих рефлекторных движений" [15].

В другой раз Эйнштейн сказал:

"Мой злейший враг - это все же ночтальоп; от этого рабства мне уже не уйти!" [16].

Эйнштейн говорил, что его тяга к парусной яхте объясняется тем, что на ней он может не бояться посетителей. Других видов спорта Эйнштейн не любил. "Я не люблю физических напряжений, - говорил он, - скорее, я склонен к лени, поэтому парусный спорт единственный, который мне нравится" [17].

15 Seellg, 272.

16 Ibid., 283.

17 Ibid.

Эйнштейн одевался крайне скромно. Он носил коричневую кожаную куртку - давний подарок Эльзы. В холодные дни появлялся серый свитер из английской шерсти - также подарок Эльзы и также очень давний. На званые обеды Эйнштейн ходил в старомодном темном костюме, а смокинг надевал только в исключительных случаях по единодушному требованию семьи.

201

Сохранилось немало воспоминаний о внешнем виде Эйнштейна, его привычках и манере работать. В своем кабинете-мансарде Эйнштейн пишет, читает, но больше всего думает. Время от времени он склоняет голову налево и накручивает на палец седую прядь. Часто Эйнштейн берет в рот мундштук одной из трех лежащих перед ним хорошо прокуренных трубок. Лицо Эйнштейна бледное, с морщинами у глаз. Этот портрет, относящийся к ноябрю 1919 г., дополнен описанием одежды. Эйнштейн работал обычно в старой кожаной куртке, в коричневых шерстяных брюках и домашних туфлях на босу ногу [18].

Описания наружности, склонностей и быта, сохранившиеся в воспоминаниях и рассказах современников, меняются в деталях. Они перемежаются характеристиками манеры мышления и речи. Доктор Мориц Катценштейн, хирург, лечивший Эйнштейна, рассказывает о длительных совместных поездках на яхте в окрестностях Берлина. Эйнштейн называл Катценштейна самым близким другом в течение берлинского периода жизни; он говорил о юморе и фантазии как о главных чертах характера своего врача.

"Никогда он не становился похожим на тот распространенный в Северной Германии тип обремененного обязанностями человека, который итальянцы во времена их свободы называли "Bestia seriosa" [19]. Другой друг Эйнштейна, Рудольф Эрнан, также врач и также спутник и собеседник во время прогулок по окрестностям Берлина, дает следующую, несколько профессиональную характеристику Эйнштейна:

18 См.: Michelmore, 269.

19 Helle Zeit, 46.

"О его глазах ангела, в которых во время смеха появлялись чертики, о взгляде на окружающее без всякой задней мысли, - об этом знают многие современники. Меньше знают о его физическом состоянии. Эйнштейн был выше среднего роста, с белой кожей и крепкой мускулатурой... Он не любил лекарств, но любил врачей... Эйнштейн любил с ними беседовать, потому что встречал большой опыт общения с людьми из самых различных общественных слоев. Он находил в среде врачей некоторую близость к своим собственным интересам, ведь и сам

202

Эйнштейн мог считать себя борцом за оздоровление и улучшение человеческого рода" [20].

В Берлине частым собеседником Эйнштейна был Эммануил Ласкер. Он не оставил своих воспоминаний об Эйнштейне. Но то, что писал Эйнштейн о Ласкере, позволяет увидеть некоторые характерные черты самого Эйнштейна.

"Ласкер был, без сомнения, одним из самых интересных людей, каких я когда-либо встречал: так редко независимость мысли связана с горячим интересом ко всем большим вопросам, волнующим человечество. Я не шахматист и не могу судить о мощности его интеллекта в шахматной игре. В этой одухотворенной игре меня отталкивал дух борьбы за выигрыш" [21].

20 Ibid., 59.

21 Seelig, 331.

Интересное признание! Шахматы казались Эйнштейну глубоко осмысленным занятием. Но его собственная мысль была прикована к проблемам, где решение было связано не с условным выигрышем, а с истиной. Глубоко онтологическому мышлению Эйнштейна было в общем чуждо мышление, которое ищет критерии внутри себя самого и не преследует той цели, которая характерна для спинозовского рационализма - адекватного описания реальности. Эта тенденция отдаляла Эйнштейна от всех форм борьбы за условный выигрыш, так же как и от всех вообще форм личного в мышлении и исследовании.

Обратимся теперь к воспоминаниям Леопольда Инфельда, которые уже появлялись в этой книге. Инфельд впервые встретился с Эйнштейном в 1920 г. Он учился в Ягеллонском университете, а на пятом году обучения захотел закончить свою подготовку в Берлине у Планка, Лауэ и Эйнштейна. Но уроженцы Польши, особенно евреи, встречали весьма нелюбезный прием в прусских канцеляриях. После долгих сомнений Инфельд решил обратиться за помощью к Эйнштейну. Вот как описывает Инфельд эту встречу.

"Оробевший, глубоко взволнованный, празднично настроенный в ожидании встречи лицом к лицу с величайшим из современных физиков, я позвонил у дверей квартиры Эйнштейна на Габерландштрассе, 5. Госпожа Эйнштейн пригласила меня в маленькую комнату, заставлен-

203

ную тяжелой мебелью. Я сообщил ей о цели своего визита. Она просит извинения - мне придется подождать: муж разговаривает с китайским министром просвещения. Я ждал. Лицо у меня горело от нетерпения и возбуждения. Наконец Эйнштейн открыл дверь, попрощался с китайцем и пригласил меня. Он был в черной тужурке и полосатых брюках, на которых недоставало основной пуговицы. То самое лицо, которое я уже столько раз видел в газетах и журналах. Но ни одна фотография не могла передать блеск его глаз.

Я совершенно забыл всю свою старательно заготовленную речь. Эйнштейн дружески улыбнулся и угостил меня папиросой. Это была первая дружеская улыбка, которую мне довелось увидеть с момента приезда в Берлин. Заикаясь, я рассказал ему о своих затруднениях. Эйнштейн внимательно слушал.

- Я охотно написал бы вам рекомендательное письмо в прусское Министерство просвещения, но это ни к чему не приведет.

- Почему?

- Потому что я дал уже очень много рекомендаций. - Потом добавил тише, с усмешкой: - Они антисемиты.

Он на минутку задумался, шагая взад - вперед по комнате.

- То, что вы физик, упрощает дело. Я напишу несколько слов профессору Планку; его рекомендация значит больше, чем моя. Так будет лучше всего!

Он стал искать бумагу для писем, которая лежала тут же перед ним - на письменном столе. Я слишком оробел, чтобы указать ему на это. Наконец он нашел бумагу и набросал несколько слов. Он сделал это, не зная, имею ли я хоть какое-нибудь представление о физике" [22].

22 Успехи физических наук, 1956, 59, вып. 1, с. 137-138.

На продолжении воспоминаний Инфельда - его работа с Эйнштейном в тридцатые годы - мы еще остановимся.

В Берлине у Эйнштейна были встречи с советскими государственными деятелями. Г. В. Чичерин произвел на него сильное впечатление, и беседы с Чичериным были для Эйнштейна одним из источников сведений о революции и социализме. Глубокое сочувствие Советскому государству Эйнштейн высказывал в беседах с А. В. Луначарским, который написал об ученом небольшой очерк "Около великого" [23]. Читатель не посетует за сравнительно большие выписки из этого очерка.

204

Он начинается описанием следующего приключения. Существовала когда-то сумасшедшая дама по имени Евгения Диксон, которая прославилась попыткой застрелить советского полпреда в Париже Л. Б. Красина при помощи револьвера, испорченного и даже, кажется, незаряженного. Она в свое время преследовала Луначарского рассказами о том, как Милюков - отец ее воображаемого ребенка - убил это дитя, чтобы вызвать новый процесс Бейлиса, о другом столь же воображаемом ребенке от Азефа и, наконец, объявила, что Азеф скрывается под именем Эйнштейна и выдает себя за физика.

Впоследствии Луначарский во время пребывания в Берлине познакомился с Эйнштейном и его женой, и последняя рассказала продолжение этой истории. Евгения Диксон писала Эйнштейну, что в ближайшее время сорвет с него маску. Далее следовали угрожающие письма с различных станций между Парижем и Берлином, и, наконец, бедная дама позвонила в дверь дома на Габерландштрассе и потребовала Азефа - Эйнштейна. Увидав его, она закричала, что ошиблась, что Эйнштейн не Азеф, но тем не менее в качестве отца все того же погибшего ребенка должен спасти ее от сумасшедшего дома и давать ей деньги. Дело дошло до берлинской полиции, где какой-то из чинов заявил Эльзе, что ей не следует отрицать возможность действительной связи, и вообще изрекал невероятные благоглупости.

С этим рассказом Луначарского совпадает в основном (некоторые детали, как мы сейчас увидим, различны) то, что Зелиг передает со слов Эренфеста [24].

23 Журнал "30 дней". ML, 1930, № 1, с. 39-42

24 Seeligx 307-308.

В начале 1925 г. Эйнштейна ждали в Лейдене с утренним поездом, но он приехал только вечером и рассказал Эренфесту, что ему пришлось побывать в тюрьме, куда посадили некую женщину, хотевшую его застрелить в качестве Азефа. В подъезде ее увидела Марго и подумала, что эта явно ненормальная дама может направляться только к Эйнштейну. Позвонив из автомата домой, Марго предотвратила опасный визит, и Евгения Диксон попала в

205

тюрьму. Там ее посетил Эйнштейн; дама удостоверилась, что он не Азеф ("у вас гораздо короче нос"), а Эйнштейн помог ее освобождению и принес ей в тюрьму вещи, о которых она просила. Быть может, эта история не была столь простой и забавной, какой она выглядела в рассказе Эльзы, переданном Луначарским, и в рассказе самого Эйнштейна. В книге Гарбедиана говорится о серьезном покушении на жизнь Эйнштейна:

"Политическая активность Эйнштейна создала ему много новых друзей и множество ожесточенных врагов. Одному из таких врагов удалось обмануть бдительное око верного Отто (швейцар в доме Эйнштейна). Мария (sic!) Эргевцева-Диксон (Maria Erguewseva-Dickson), русская вдова американца, проживавшая после русской революции в Париже, тайком проникла в квартиру Эйнштейна в Берлине. Она задумала убийство при помощи отравленной шляпной булавки, но не предусмотрела бдительности Эльзы Эйнштейн, которая обезоружила коварную посетительницу, вызвала полицию и сделала все так умело и спокойно, что Эйнштейн узнал об угрожавшей его жизни опасности только много времени спустя" [25].

25 Garbedian H. Albert Einstein. New York, 1939, p. 199.

Вернемся, однако, к очерку А. В. Луначарского. Рассказанная в нем история была поводом для литературного портрета, в котором передана не только наружность Эйнштейна, но и то особенное состояние духа (Луначарский называет его "величайшей симпатией, смешанной с некоторым благоговением"), которое появлялось у всех, сталкивавшихся с Эйнштейном.

"Глаза у Эйнштейна близорукие, рассеянные. Кажется, что уже давно и раз навсегда больше половины его взоров обратились куда-то внутрь. Кажется, что значительная часть зрения Эйнштейна постоянно занята вместе с его мыслью каким-то начертанием исчислений. Глаза поэтому полны абстрактной думой и кажутся даже немного грустными. Между тем в общежитии Эйнштейн чрезвычайно веселый человек. Он любит пошутить... он смеется добродушным, совершенно детским смехом. При этом на мгновение глаза его делаются совершенно детскими. Его необыкновенная простота создает обаяние, и так и хочется как-то приласкать его, пожать ему руку, похлопать по плечу - и сделать это, конечно, с огромным уважением. Получается какое-то чувство нежного участия, признания большой беззащитной простоты и вместе с тем чувство беспредельного уважения".

206

Луначарский пишет и об Эльзе Эйнштейн.

"Она - женщина не первой молодости, густо седая, но обворожительная, все еще прекрасная красотой нравственной, больше даже, чем красотой физической. Она вся - любовь к своему великому мужу, она вся готова отдаться защите его от грубых прикосновений жизни и предоставлению ему того великого покоя, где зреют его мировые идеи. Она проникнута сознанием великого значения его как мыслителя и самым нежным чувством подруги, супруги и матери к нему как к привлекательнейшему и своеобразному взрослому ребенку".

Двадцатые годы были переломными в жизни Эйнштейна. Он наблюдал тяжелую картину роста националистических реваншистских настроений. В научном творчестве блестящие успехи общей теории относительности сменились очень тяжелыми, сложными, подчас мучительными поисками единой теории поля. Общая теория относительности развивалась, ее аппарат совершенствовался. Но центр тяжести научных интересов Эйнштейна лежал теперь в иной области.

Сразу же после появления общей теории относительности была поставлена в порядок дня проблема единой теории поля. Мы можем отождествить тяготение с искривлением пространства. Нельзя ли найти другие геометрические свойства пространства, с которыми можно отождествить иные силовые поля, помимо гравитационных? Нельзя ли таким путем свести к единым геометрическим соотношениям все силовые поля и объединить их в единое поле, выражающееся в некоторых геометрических свойствах пространства? Из иных полей, помимо гравитационного, тогда было известно только электромагнитное поле. Предпринимались попытки его геометризировать, т.е. представить в виде изменения геометрических свойств пространства. В этом и состояла задача построения единой теории поля.

В 1918 г. Герман Вейль предложил геометризировать наряду с теорией тяготения и теорию электромагнитного поля. Эйнштейн отождествил тяготение с искривлением пространства-времени, иными словами, он предположил, что пространство-время, в котором действуют гравитаци-

207

онные поля, подчинено не геометрии Евклида, а геометрии Римана. В геометрии Римана вектор, обойдя замкнутый контур, меняет свое направление. В этом и выражается кривизна пространства. Но в геометрии Римана такой изменивший свое направление вектор сохраняет первоначальную длину. В геометрии Вейля этот вектор уже не сохраняет свою первоначальную длину. Изменение направления вектора отождествляется с гравитационным полем, изменение его длины - с электромагнитным полем.

Таким образом, единая геометрическая схема, единое представление о геометрических свойствах пространства-времени позволяет найти и уравнения гравитационного поля, и уравнения электромагнитною поля.

Эйнштейн был восхищен стройностью и виртуозностью геометрического решения. Но только геометрического. О физической содержательности схемы Вейля, о действительном подчинении закономерностей бытия этой схеме, о возможности экспериментально решить вопрос о геометрической структуре мира, обо всем этом нельзя было говорить. Между тем для Эйнштейна важно было не геометрическое, а физическое, "внутреннее совершенство" теории. В июне 1918 г. в письме Вейлю Эйнштейн со столь характерной для его писем иронической терминологией обращается к Вейлю:

"Можно ли обвинять господа бога в непоследовательности, если он упустил указанную Вами возможность сделать физический мир гармоничным?". Если бы бог воспользовался этой возможностью, продолжает Эйнштейн, то явился бы "Вейль-П", который обратился бы к нему с иными упреками. "Но поскольку господь бог задолго до появления теоретической физики понял, что не может приспособиться к суждениям всего света, он предпочитает делать то, что ему хочется" [26].

Речь идет о неоднозначности геометрических схем, об отсутствии exprimentum crucis, который может им придать физическую однозначность.

Эйнштейн выдвинул ряд других геометрических схем, каждая из которых первоначально представлялась ему способной обрести физическую однозначность, а потом оказывалась далекой от такого подтверждения. Вейль впоследствии отказался от развития своей схемы, а Эйнштейн продолжал подобные попытки. Вейль вспоминал свои споры с Эйнштейном, начатые в 1918 г., и сближал позднейшие построения Эйнштейна со своими первоначальными концепциями.

208

"Эйнштейн был с самого начала против них, и мы вели многочисленные дискуссии. Я надеялся опровергнуть его конкретные возражения. Наконец Эйнштейн сказал мне: "Ну, Вейль, оставим это. Умозрительно, без указывающего путь наглядного физического принципа физику нельзя конструировать". Сейчас мы поменялись ролями. Эйнштейн думает, что между идеей и опытом здесь глубокая пропасть и нужно действовать математическими умозрительными конструкциями. Их, конечно, придется развить и сопоставить с наблюдениями. Такой путь ведет к успеху. Но я смотрю теперь на дело иначе. Моя вера в логический путь утрачена, и я теперь надеюсь на другое: связь с экспериментальной квантовой физикой приведет к результату. Такая связь особенно необходима потому, что теперь вопрос уже не сводится к единству гравитационного и электромагнитного полей. Мы уже знаем о волновом поле электронов, мы можем узнать о других полях, связанных с иными элементарными частицами. Все это должно быть включено в единую теорию поля" [27].

26 Seelig, 278-279.

27 Seelig, 274-275.

Все дело в том, однако, что конструирование геометрических схем без физической расшифровки, с переносом такой расшифровки на будущее не могло удовлетворить Эйнштейна. Он с поразительным упорством воздвигал новые бастионы и с не менее поразительным самоотречением разрушал их, чтобы перейти к еще более новым. Он ждал физической однозначности. Геометрические конструкции были душами, которые ищут воплощения. Эти поиски были мучительными для Эйнштейна. В его сознании они переплетались с впечатлениями общественной дисгармонии. С этой стороны интересны строки письма Эйнштейна, отправленного Эренфесту в апреле 1920 г.:

"В общей теории относительности я не достиг продвижения: электрическое поле по-прежнему ни с чем не связано. Связь не получается. И ничего у меня не выходит в понимании электронов. Мой ум потерял гибкость или действительно спасительная идея очень далека? Я с восторгом читаю "Братьев Карамазовых". Это самая поразитель-

209

ная книга из всех, которые попадали мне в руки... Что касается внешних событий, то как будто воцарился покой. Но везде чувствуются неимоверно острые противоречия. В городе потрясающая нищета, голод, неимоверная детская смертность..." [28]

Отметим, что фраза о "Братьях Карамазовых" находится между жалобами на неудачи единой теории поля и рассказом о тяжелых впечатлениях берлинской жизни. Это единственное, что воодушевляет Эйнштейна из всего упомянутого в письме. Как часто Эйнштейн в поисках мировой гармонии уходил из области абстрактно-логических схем в область литературно-художественных восприятий. Такой переход облегчался эмоциональностью научного творчества и рационализмом художественных интересов и склонностей.

О единой теории поля речь впереди и еще не близко. Заметим только, что уже в двадцатые годы в письмах и дневниках Эйнштейна часто звучит грустное ощущение величайшей трудности постижения мировой гармонии. И величайшей трудности установления общественной гармонии. Это ощущение появляется, в частности, в путевых письмах и путевых дневниках Эйнштейна.

Эйнштейн относился с некоторым недоумением к деятельности Галилея, направленной на защиту гелиоцентризма. Он говорил, что в отношении собственных идей предпочел бы рассчитывать на убедительность, присущую самой истине, которая не нуждается для своего признания в слабых усилиях мыслителя. И вместе с тем Эйнштейн утверждал, что без чувства солидарности с единомышленниками жизнь показалась бы ему пустой. Противоречие здесь кажущееся. Для Эйнштейна его концепция мира представлялась непоколебимой в своей основе, в своих исходных принципах. Она казалась ему простой и постижимой в силу своей естественности и стройности - "внутреннего совершенства", завоевывающего умы независимо от сложных вычислений и наблюдений. Эйнштейн доводил свои работы до безукоризненной логической и математической корректности, он тратил долгие годы на разработку очень сложных математических построений, он понимал их спорность и их недоступность широким кругам. Но наряду со сложным, спорным и эзотерическим содержанием

210

теоретические конструкции Эйнштейна включали простые и ясные принципы, допускавшие экзотерическое, простое и ясное изложение. Эти принципы нужно было раскрыть перед людьми, и их внутренняя стройность и убедительность должны были довершить все остальное.

В двадцатые годы Эйнштейн почувствовал с особенной силой необходимость изложения указанных простых, ясных и бесспорных принципов науки. Отравленные замыслы реванша, безыдейная и бессильная позиция Лиги Наций, сращивание националистической стихии с выступлениями против основ научного мировоззрения - все это вызывало у Эйнштейна мысль о социальном эффекте науки.

Не математические расчеты, а рациональный дух физических теорий и общая картина вселенской гармонии должны были противостоять реакции. В этой сфере единомышленниками Эйнштейна, к которым он тянулся и чьей солидарности искал, были широкие круги. Общение с ними не укладывалось в рамки физических журналов.

В 1615 г. Галилей поехал в Рим, чтобы отстаивать гелиоцентризм и классический принцип относительности перед конгрегацией кардиналов. В двадцатые годы нашего столетия Эйнштейн предпринимал длительные и многократные путешествия, чтобы отстаивать новую картину мира перед коллективным разумом человечества.

Интересно, что противники Эйнштейна отметили расширение аудитории, к которой обращался Эйнштейн. В Германии появилась брошюра под названием "Теорию относительности внушают массам". Ее автор писал:

"Поскольку ошибочный характер теории относительности стал очевиден для научных кругов, Эйнштейн все более и более начал обращаться к массам и придавать своей теории и себе все более публичный характер" [29].

28 Seelig, 265.

29 Frank, 167.

В начале двадцатых годов Эйнштейн и Эльза побывали в Голландии, Чехословакии и Австрии, затем отправились в Америку, остановились в Англии, посетили Францию и, наконец, совершили путешествие в Японию, Палестину и Испанию.

211

В Голландии, в Лейдене, Эйнштейн прочитал перед полуторатысячной аудиторией лекцию "Эфир и принцип относительности". Эта лекция - популярная и затрагивавшая основные идеи физики - характерна для поисков нецеховых единомышленников. Она пронизана мыслью о рациональной схеме мироздания, мыслью, общественный резонанс которой оценивали теперь и друзья, и враги. Последние писали о взглядах Эйнштейна:

"Долгое время нас старались убедить в сенсационном факте, что эфира не существует, а теперь сам Эйнштейн восстанавливает его, Этого человека нельзя принимать всерьез, он постоянно противоречит сам себе" [30].

30 Frank, 168.

Энтузиазм друзей Эйнштейна и, главное, небывалое расширение их контингента после лекции в Лейдене показывали, что дело идет не только о физике, а о защите рационального, научного мировоззрения против сил реакции.

В лейденском докладе 1920 г. "Эфир и принцип относительности" Эйнштейн подошел к понятию эфира исторически. Это понятие появилось в науке, отвечая стремлению к единству физической картины мира. Идея дальнодействия противоречит представлению о толчках как о причине движения тел. Поэтому казалось необходимым ввести гипотезу среды, давление или толчки которой заставляют тела стремиться одно к другому. Далее, волновая теория света требовала представления о среде, механические колебания которой распространяются волнообразно и служат причиной оптических явлений. В XIX в. оптические эксперименты привели к убеждению, что указанная среда не участвует в движении тел, что тела при своем движении смещаются относительно эфира. Но эксперимент Майкельсона показал, что вытекающее из такого смещения различие скорости света в различных направлениях внутри движущегося тела не подтверждается. Специальная теория относительности вывела отсюда, что движение относительно эфира есть понятие, не имеющее физического смысла: мы не в силах указать физические наблюдения, с которыми можно было бы сопоставить подобную конструкцию разума.

Но общая теория относительности открывает путь к некоторой реабилитации эфира, к приписыванию этому понятию некоторого физического смысла. Дело в том, что тяжелые тела - источники гравитационных полей - меняют метрические свойства пространства. Последние

212

рассматриваются как физические свойства. Но если пространство обладает определенными, наблюдаемыми физическими свойствами, мы можем рассматривать его как материальную среду и назвать ее эфиром, только ни в коем случае не наделяя реабилитированный эфир классическими свойствами, не предполагая, что физические объекты движутся в эфире или что части эфира смещаются со временем. Допуская, таким образом, в физику понятие эфира, Эйнштейн говорил:

"Согласно общей теории относительности пространство обладает физическими качествами, в этом смысле, следовательно, существует эфир".

Нужно отметить, что понятие эфира в последующие годы все же не вошло в физику. Предпочитали говорить просто о гравитационном поле, изменяющем свойства пространства.

Поездка в Лейден в 1920 г. была началом систематических посещений этого города. Помимо Лоренца, об отношении к которому уже говорилось, Эйнштейна притягивало общество Эренфеста. Дом Эренфеста был родным домом Эйнштейна, а Пауль Эренфест и его жена Татьяна Алексеевна Афанасьева-Эренфест - самыми близкими друзьями Эйнштейна и Эльзы. В 1923 г. преемником Лоренца в Лейденском университете стал Эренфест, а Эйнштейн был приглашен в качестве внештатного профессора. Он ездил из Берлина в Лейден, приходил к Эренфестам, где для него каждый раз готовили то, что он любил. Эренфесты запомнили радостный возглас Эйнштейна по приходе в эту квартиру: "Что нужно человеку, кроме скрипки, кровати, стола и стула!"

На следующий год после лейденской лекции пражское научное общество "Урания" пригласило Эйнштейна прочесть лекцию. Эйнштейн приехал в Прагу. Он был гостем Филиппа Франка. Франк с женой жили в это время в физической лаборатории немецкого университета, в том кабинете, который раньше принадлежал Эйнштейну. В Чехословакии в это время трудно было найти квартиру. Эйнштейна устроили тут же, и это помогло ему избавиться от толпы корреспондентов. Вместе с Франком они посетили чешский университет и затем побывали в нескольких кафе - Эйнштейну хотелось посмотреть вблизи на жизнь города, по которому он в свое время так много бродил.

213

Вечером состоялась лекция Эйнштейна в переполненном зале общества "Урания", а затем - встреча членов этого общества с Эйнштейном. После ряда приветственных речей наступила очередь Эйнштейна. "Будет, по-видимому, приятнее и понятнее, - сказал он, - если вместо речи я сыграю вам на скрипке". И к всеобщему удовольствию Эйнштейн сыграл сонату Моцарта [31].

Из Праги Эйнштейн направился в Вену, где прочел публичную лекцию в огромном концертном зале, вмещавшем три тысячи человек.

В Вене Эйнштейн узнал подробности нашумевшего тогда дела Фридриха Адлера. Во время войны Адлер застрелил главу австрийского правительства, когда тот обедал в ресторане. Адлер был приговорен к смерти, но император заменил приговор пожизненным заключением. Во время следствия защита попыталась объяснить поступок Адлера невменяемостью. Подтверждение этому хотели найти в следующем факте. Вслед за Махом Адлер выступил против теории относительности и в тюрьме написал работу, которая, по его мнению, неопровержимо доказывала ложность взглядов Эйнштейна. Суд назначил экспертизу, которая должна была определить, не свидетельствует ли эта работа об умственном расстройстве подсудимого. В числе экспертов был и Филипп Франк. Он рассказывает, что эксперты оказались в затруднительном положении. Признание умственного расстройства помогло бы облегчить приговор, но нанесло бы удар Адлеру, дискредитировало бы труд, в который он глубоко верил, и заглушило бы политический резонанс его выстрела [32].

31 Frank, 172.

32 Ibid., 174.

Эйнштейн остановился у Феликса Эренгафта, талантливого австрийского физика. С Эйнштейном они постоянно спорили, но, несмотря на это, а отчасти именно поэтому Эйнштейн любил с ним встречаться. Жена Эренгафта, известный организатор женского образования в Австрии, хотела, чтобы Эйнштейн выглядел на лекции вполне прилично; поэтому из двух пар привезенных им брюк она одну дала выутюжить портному и вручила их Эйнштейну, однако на лекции он все же появился в неотутюженных брюках.

214

В том же 1921 г. Эйнштейн предпринял значительно более далекое путешествие. Он посетил Америку и прочитал там ряд лекций, посвященных теории относительности. В нью-йоркской гавани Эйнштейна ждала огромная толпа. Как только пароход пришвартовался, репортеры заполнили палубу. Тесным кольцом репортеры окружили Эйнштейна. Как ни старался Эйнштейн избежать интервью, ему пришлось отвечать на вопросы. На просьбу изложить в нескольких фразах существо теории относительности Эйнштейн ответил:

"Если вы согласитесь не слишком серьезно отнестись к ответу и принять его как своего рода шутку, я могу дать следующее объяснение. Прежде считали, что, если все материальные тела исчезнут из Вселенной, время и пространство сохранятся. Согласно же теории относительности, время и пространство исчезнут вместе с телами" [33].

33 Frank, 179.

34 Ibid., 180.

Его спросили, правда ли, что только двенадцать человек понимают теорию относительности. Эйнштейн ответил, что он никогда не утверждал этого. И действительно, это замечание принадлежит Ланжевену, который сделал его на заре теории относительности. Эйнштейн сказал, что любой физик может легко понять теорию относительности и все его студенты в Берлине понимают ее. Действительно, в это время множество физиков во всех странах не только понимало теорию относительности, но и участвовало в ее разработке.

Эльзе тоже был задан вопрос, понимает ли она эту теорию, и она ответила:

"О, нет, хотя он и не раз объяснял ее мне, но это вовсе не нужно для моего счастья" [34].

Из лекций, прочитанных в Америке, наиболее важны четыре лекции в Принстонском университете. Они были изданы и стали на долгое время классическим изложением теории относительности.

По пути из Америки Эйнштейн по приглашению лорда Холдейна остановился в Лондоне, где прочитал лекцию в Kings College. Обширная аудитория отнеслась к Эйнштейну сдержанно: он был всемирно известный ученый, но представлял немецкую науку. Впервые его не встретили аплодисментами. Эйнштейн говорил об интернациональ-

215

ной роли науки, о контакте ученых, о роли английского народа в развитии науки, о Ньютоне. Он поблагодарил английских коллег и отметил, что без их участия он вряд ли увидел бы наиболее важное подтверждение своей теории. Лекция была программой интернационального сотрудничества ученых. Она вызвала значительный перелом не только в настроении аудитории, но и в настроении английских научных кругов в целом. И этот этап путешествия также демонстрировал общественный резонанс и общественное значение идей Эйнштейна.

В Лондоне Эйнштейн и Эльза остановились в аристократическом особняке, где им были отведены внушительных размеров апартаменты - большие, чем берлинская квартира ученого. Эйнштейн был смущен обстановкой, но это чувство превратилось в настоящий ужас, когда к нему был приставлен личный слуга. Увидев этот одетый в форму монумент, Эйнштейн обратился к жене: "Эльза, как ты думаешь: они нас выпустят, если мы попытаемся убежать?" Они ночевали в огромной спальне с окнами, закрытыми тяжелыми гардинами. Утром Эйнштейн, как обычно, встал рано и тщетно пытался поднять гардины. Позади раздался веселый голос жены: "Альбертль, почему ты не позвал слугу, чтобы он это сделал?" - "Нет, это слишком страшно". Наконец, общими силами гардины были побеждены, и Эйнштейн с Эльзой отправились в столовую завтракать.

Вечером был дан обед в честь гостя. На обеде присутствовал архиепископ Кентерберийский. Его интересовало, каково отношение теории относительности к религии, и он спросил об этом Эйнштейна. Ответ был кратким и категоричным: "Никакого". Архиепископ облегченно вздохнул. Теперь он мог не беспокоиться.

В июне 1921 г. Эйнштейн вернулся в Берлин. Триумф в Америке и в Англии привел к дальнейшему накалу общественной борьбы вокруг Эйнштейна и теории относительности. В Германии реакция поднимала голову.

В июне 1922 г. был убит Вальтер Ратенау - сторонник сближения с Советской Россией. В день его похорон в университетах были отменены занятия, и только Филипп Ленард в Гейдельберге демонстративно пригласил своих политических единомышленников на очередную лекцию. Нападки на Эйнштейна и на теорию относительности стали частью большого заговора против демократии, мира и

216

прогресса. Когда гейдельбергские рабочие в день похорон Ратенау выбросили Ленарда из его аудитории, а Ленард в ответ усилил истерические расистские атаки на теорию относительности, здесь все становилось ясным. Ленард и террористические националистические организации видели в теории относительности торжество ненавистной им рациональной мысли. Рабочие и демократическая интеллигенция видели в ней нечто противостоящее реакции. Все, что интуитивно угадывалось в 1919-1920 гг., теперь подтвердилось ходом общественной борьбы вокруг Эйнштейна и теории относительности.

Идейное размежевание усиливалось или становилось более явным после поездок Эйнштейна. В марте 1922 г. Эйнштейн поехал во Францию, куда его по инициативе Ланжевена пригласил College de France. Встречали его Ланжевен и Нордман - французский физик, много сделавший для распространения идей Эйнштейна во Франции.

Ланжевен и Нордман знали, что националистическо-монархические круги готовят провокационные выступления на вокзале. Поэтому они провели Эйнштейна в город через боковой выход. Но оказалось, что толпа, стоявшая перед вокзалом, состояла из студенческой молодежи, хотевшей приветствовать Эйнштейна и в случае нужды дать отпор провокационным вылазкам. Молодежью руководил сын Ланжевена.

В пятницу, 31 марта, в 5 часов вечера в самой большой аудитории College de France собрались ученые и некоторое число студентов. Присутствующие удивлялись, что на сенсационном вечере нет "всего Парижа", т.е. обычных посетителей театральных премьер. Ланжевен позаботился, чтобы билеты попали только тем, кто интересовался существом предстоявшей дискуссии.

В своем выступлении Эйнштейн говорил о коллизии между классическим принципом относительности и электродинамикой. Электродинамика заставила заинтересоваться вопросом: остается ли в силе принцип относительности и невозможность зарегистрировать прямолинейное и равномерное движение системы, если учитывать не только механические процессы, но и распространение света в системе. Постоянство скорости света означает, что движение системы остается относительным, если принимать во внимание и оптические процессы: скорость света не ме-

217

няется при инерционном движении и не дает какого-либо внутреннего критерия движения. Эйнштейн указал на объективный, субстанциальный характер этого исходного положения теории относительности. Он говорил о некоторых математиках, усвоивших формулы, но не понявших существа теории: "Они напрасно видят в ней лишь формальные соотношения и не задумываются над физическими реальностями, соответствующими употребленным математическим символам". Эйнштейн понимает под физической содержательностью возможность сопоставить основанные на логических заключениях абстрактные конструкции с наблюдениями. Такая возможность демонстрирует существование внешней объективной реальности - причины ощущений, и сопоставление с последними доказывает, что конструкции имеют объективный смысл.

Пространственное расстояние - понятие, которое должно быть сопоставлено с наблюдением. Но к такому сопоставлению пригодно лишь расстояние, пройденное каким-то физическим объектом. Поскольку физический объект не может двигаться с бесконечной скоростью, мы можем сопоставить с наблюдением понятие, объединяющее пространственное расстояние и интервал времени. Такое понятие обладает физическим смыслом. В объективном мире нет "мгновенных" пространственных расстояний, существуют лишь пространственно-временные интервалы.

3 апреля в физической аудитории College de France происходила дискуссия в несколько более узком кругу. Эйнштейн указал на невозможность синхронизировать часы при наблюдении их хода в движущихся одна отноносительно другой системах. Главным оппонентом был Пенлеве - знаменитый математик, восторженно говоривший о блеске эйнштейновского гения, но критиковавший основные посылки теории относительности. Он приводил примеры, противоречащие этим выводам, но, как разъяснял Эйнштейн, в этих примерах неявно фигурируют ускорения систем. На них компетенция специальной теории не распространяется.

Еще через три дня, 6 апреля, в Сорбонне состоялось заседание Французского философского общества, где Эйнштейн излагал свои взгляды на философию Канта, затем спорил с Бергсоном, защищавшим идею особого "внутреннего" интуитивно постигаемого времени. Эмиль Мейерсон задал Эйнштейну вопрос о его отношении к философии

218

Маха. В ответ он услышал уже приводившуюся характеристику: "жалкий философ" [35].

Во Французской Академии наук Эйнштейн не выступал. Здесь для многих имя Эйнштейна было одиозным - он был сторонником свободы, мира, социального прогресса. Другие (а иногда те же самые) члены Академии видели в теории относительности опасность для канонизированной классической науки. Для них, по выражению Эйнштейна, "все, чему они научились до 18 лет, является опытом, все позднейшее - измышлением" [36].

Реакционные в научном и политическом отношении (эти критерии с течением времени все больше совпадали) круги ссылались на формальные мотивы. В зале заседаний Французской Академии наук имели право находиться только ее члены. Эйнштейн не входил в их число и мог занять место на хорах среди публики. Тридцать академиков заявили, что они покинут собрание, если Эйнштейн появится на нем. Все это дошло до Эйнштейна, и он отказался от приглашения, избавив многих своих друзей от неприятных эксцессов.

"Как раз те самые группы, - пишет Франк, - которые бурно протестовали против приема Эйнштейна, потому что он немец, стали наиболее усердными коллаборационистами, когда нацисты захватили власть. Эти французские "патриоты" подготовили поражение Франции и немецкое вторжение в 1940 г." [37]

35 Bulletin de la Societe francaise de philosophie. Seance du 6 avril 1922, p. 92; Meyerson E. La deduction relativiste. Paris, 1925, p. 62.

36 Frank, 186.

37 Ibid., 197.

Из Парижа Эйнштейн вернулся в Берлин, но оставался недолго. Настойчивые приглашения шли из Японии. Там готовились к его лекциям, ждали встреч. Осенью 1922 г. Эйнштейн и Эльза приехали в Марсель и на японском пароходе отплыли на восток. Они пересекли Средиземное море и Индийский океан, останавливались в Коломбо, Сингапуре, Гонконге и Шанхае. Всюду приезд Эйнштейна воспринимался как радостное событие для очень широкого круга людей.

219

Для Эйнштейна путь от Коломбо до Шанхая был серией весьма сложных впечатлений. Все время продолжалась напряженная интеллектуальная деятельность: Эйнштейн думал о проблемах, которые стали для него надолго, на тридцать лет, источником надежд, разочарований, подчас трагических, новых надежд, новых разочарований. Размышления о единой теории поля не выталкивались из сознания впечатлениями путешествия, но и не мешали этим впечатлениям. Наибольший интерес вызывали у Эйнштейна картины жизни обитателей Коломбо, Сингапура, Шанхая. В своем путевом дневнике Эйнштейн рассказывает о цейлонских рикшах, "нищих с королевской осанкой", о своем нежелании воспользоваться варварским транспортом, о перенаселенных бедных кварталах восточных портовых городов, "где полуголые люди с мускулистыми телами и тонкими и спокойными лицами заставляют критически отнестись к европейцам, у которых вырождение, вульгарность и жадность считаются практической сметкой и предпринимательскими данными..." [38]

38 Michelmore, 117-118.

В конце ноября Эйнштейн прибыл в Кобе. Его приветствовала огромная толпа жителей города. Началась серия лекций, встреч, приемов и визитов, тем более утомительных, что каждое слово требовало перевода. На лекциях сотни людей слушали непонятную немецкую речь и потом, еще внимательнее, - японского ученого, переводившего слова Эйнштейна. Первая лекция с переводом продолжалась более четырех часов. Эйнштейн решил пощадить своих покорных слушателей, и в следующем городе лекция с переводом длилась два часа. Но он ошибся. Японские спутники Эйнштейна с некоторым смущением объяснили ему, что сокращение огорчило аудиторию.

В Японии Эйнштейна застала весть об избрании его в Российскую Академию наук. В представлении, подписанном А. Ф. Иоффе, П. П. Лазаревым и В. А. Стекловым, говорилось: "...Поразительные успехи, которых добилась физика за последние пятнадцать лет, в значительной степени обязаны его идеям".

В каждом новом городе повторялись приемы, встречи, подношения, сопровождаемые сложными обрядами. Эйнштейну подарили "Чайную энциклопедию", в четырех томах которой содержалось описание многообразных церемоний чаепития.

220

Япония произвела на Эйнштейна сильное впечатление.

"В Японии было чудесно, - писал он Соловину. - Деликатные манеры, интерес ко всему, художественное чутье, интеллектуальная наивность в соединении со здравым смыслом. Изящный народ в живописной стране" [39].

Эйнштейн встретился с японскими детьми. Прощаясь, он сказал им, что знания, полученные ими в школе, - это наследие предыдущих поколений, к которому они сами должны кое-что добавить и передать своим детям, ибо "таким образом мы, смертные, достигаем бессмертия в остающихся после нас вещах, которые мы создаем сообща" [40].

Пробыв несколько недель в Японии, Эйнштейн и Эльза, напутствуемые пожеланиями и нагруженные подарками, направились в Палестину. Британский верховный комиссар Герберт Самюэль поселил их в своем дворце и принял на себя роль гида. Здесь Эйнштейну также пришлось подчиниться ритуалу. При каждом его выезде из резиденции раздавался пушечный залп. Всюду за Эйнштейном следовал отряд кавалерии в парадных мундирах. На торжественных приёмах, обедах и завтраках тщательно соблюдались все предписаний английского этикета. Эйнштейн относился к ним с иронической снисходительностью, но Эльза взбунтовалась.

"Я только простая домохозяйка. Меня не интересуют все эти нелепые парады, - жаловалась она мужу.

- Будь терпелива, дорогая. Мы на пути домой.

- Тебе легко быть терпеливым. Ты знаменитый человек. Когда ты совершаешь ошибку в этикете или поступаешь как заблагорассудится, на это смотрят сквозь пальцы. А меня постоянно дразнят в газетах. Зная мою близорукость, они пишут, что вместо салата я съедаю зеленые листья цветов, разложенные на моей тарелке" [41]. И она под любым предлогом старалась уклониться от участия в церемониях.

39 Lettres к Solovine, 45.

40 Garbedian H. Albert Einstein, p. 218.

41 Freeman. The story of Albert Einstein. New York, 1958, p. 128.

Эйнштейн выступал с лекциями в Иерусалимском университете, в Тель-Авиве и других городах. Повсюду его встречала широкая аудитория, с которой он делился своими научными и политическими взглядами.

221

Покинув Палестину, Эйнштейн и Эльза в марте 1923 г. прибыли в Марсель, откуда направились в Испанию и вскоре вернулись в Берлин. В Испании Эйнштейн читал лекции в Мадридском университете.

В июле 1923 г. Эйнштейн выехал в Швецию на церемонию вручения Нобелевской премии, присужденной ему в ноябре 1922 г., вскоре после того как началось его путешествие по Востоку. В Гётеборге он выступил с лекцией перед собранием скандинавских ученых, на котором присутствовал шведский король.

На торжественной церемонии вручения премии, вернее при подготовке этой церемонии, имел место дипломатический казус. Швейцарский посол претендовал на роль представителя страны, гражданином которой является новый нобелевский лауреат. Эйнштейн действительно сохранил швейцарское подданство. Но посол Германии претендовал на такую же роль: в качестве члена Прусской Академии наук Эйнштейн считался гражданином Германии. Уже известная нам шутка Эйнштейна в "Таймсе" ("сейчас, после экспедиции Эддингтона, в Германии автора теории относительности называют немецким ученым, а в Англии - швейцарским евреем, в ином случае произошло бы обратное") оправдывалась. В Швеции отдали предпочтение более официальной и более постоянной швейцарской версии, и родину Эйнштейна представлял посол Швейцарии.

Нобелевскую премию Эйнштейну собирались присудить уже давно. Но в Нобелевском комитете колебались. Теория относительности встречала немало возражений. У Нобелевского комитета существовала тогда традиция давать премии за конкретные открытия - бесспорные и практически применимые. Шведская Академия и Нобелевский комитет боялись политического резонанса присуждения премии за теорию относительности, боялись неизбежной реакции со стороны Ленарда и иже с ним. Поэтому присуждение премии было сформулировано следующим образом: "Премия присуждается Эйнштейну за открытие закона фотоэлектрического эффекта и за его работы в области теоретической физики" [42].

42 Frank, 202.

222

Ленард сразу же направил в Шведскую Академию наук резкий протест.

Получив премию, Эйнштейн отдал всю сумму Милеве.

После возвращения в Германию Эйнштейн чаще, нежели раньше, выступал с научно-популярными лекциями и с докладами на общие темы перед сравнительно широкой аудиторией. Он участвовал также в благотворительных концертах. На этом поприще слава пришла к нему с неожиданной стороны. Как-то в одном из городов Германии он выступал в концерте. В публике сидел молодой журналист, которому предстояло написать отчет о концерте. Он обратился к одной из зрительниц:

- Кто этот Эйнштейн, который выступает сегодня?

- Боже мой, разве вы не знаете? Это же великий Эйнштейн!

- Ах, да, конечно. - И он принялся что-то строчить. На следующий день в газете был напечатан отчет о выступлении великого музыканта Альберта Эйнштейна. О нем говорилось как о музыкальной знаменитости, как о несравненном виртуозе-скрипаче.

На Габерландштрассе очень веселились и больше всех сам Эйнштейн. Он вырезал заметку, постоянно носил ее с собой и, показывая знакомым, говорил: "Вы думаете, я ученый? Я знаменитый скрипач, вот кто я на самом деле!" [43]

43 Freeman. The story of Albert Einstein, p. 124.

В 1928 г. Эйнштейн ездил в Давос, где читал лекцию для больных студентов. После этого ему пришлось остаться в Швейцарии в качестве пациента - у Эйнштейна после усиленной гребли на тяжелой лодке появились симптомы расширения сердца. В Цуосе, в отеле, он пожалел старика портье, не дал ему нести чемодан, понес чемодан наверх и слег с тяжелым нарушением сердечной деятельности. Ему пришлось долгое время провести в постели. Эльза искала помощника, который сделал бы возможным для больного дальнейшую научную работу. Ей порекомендовали Эллен Дюкас, которая осталась секретарем Эйнштейна до конца его жизни.

223

Наступил 1929 год. Приближался день пятидесятилетия Эйнштейна. Появились уже первые "ласточки" с фотоаппаратами и репортерскими блокнотами. Эйнштейна испугала надвигавшаяся гроза, он сбежал и за несколько дней до юбилея поселился в маленьком коттедже на берегу озера вблизи Берлина. В день рождения собралась семья. Эльза и ее дочери привезли обед с любимыми блюдами Эйнштейна, в том числе грибами, тушеными овощами, салатом, фруктами и тортом. Кофе и вино были запрещены.

Эйнштейн еще не оправился от болезни. Он был в своей обычной одежде: старых брюках и простом свитере. Ему разрешили выкурить трубку (он так и не смог отказаться от курения). Когда Эльза спрашивала его: "Сколько трубок ты выкурил сегодня?" - он неизменно отвечал: "Одну". - "Ты все-таки плохой математик", - говорила ему Эльза [44].

44 Garbedian H. Albert Einstein, p. 240.

45 Frank, 223.

Берлинский муниципалитет решил подарить Эйнштейну ко дню рождения загородный дом. Однако муниципальные чиновники допустили при этом удивительную небрежность. Дважды Эйнштейну дарили участки, на которые права муниципалитета не распространялись. Создалось крайне неловкое положение. Ученого попросили, чтобы он сам подыскал подходящий участок, который муниципалитет мог бы купить и построить на нем дом. Эльза нашла такой участок в деревне Капут, вблизи Потсдама. Был заключен контракт с владельцами, приглашены архитектор и строители. Между тем вопрос о выделении средств на покупку участка и постройку дома встретил сопротивление националистической группы членов муниципального совета, и решение затянулось. Вся история приняла совершенно недостойный характер, и Эйнштейн решительно отказался от подарка. Он написал бургомистру Берлина письмо, в котором говорилось:

"Дорогой господин бургомистр! Человеческая жизнь коротка, а власти действуют медленно. Моя жизнь, я чувствую, тоже слишком коротка, чтобы я мог приспособиться к Вашим методам. Я благодарю Вас за Ваше дружественное намерение, но сейчас день моего рождения уже позади, и я отказываюсь от подарка" ".

Работы по постройке дома были уже начаты, и Эйнштейну пришлось самому оплатить и участок, и строительство дома.

224

Эльза по этому поводу говорила Филиппу Франку: "Таким образом, мы, сами не желая того, приобрели прелестный собственный дом, расположенный в лесу, возле воды. Но мы истратили почти все наши сбережения. Теперь у нас нет денег, но есть свой дом. Это позволяет чувствовать себя в большей безопасности" [46].

46 Ibid.

Тихая деревушка Капут расположена в холмистой местности возле озера и окружена лесом. Дом Эйнштейна находился за деревней, в нескольких минутах ходьбы от озера. На берегу озера - причал и возле него па якоре маленькая яхта "Туммлер". Кругом - спокойный сельский ландшафт, тишина и свежий воздух.

Эйнштейн садился в яхту, поднимал паруса и брался за руль. Часами он оставался в этом убежище, недоступном телефону и визитам.

В 1930 г. на Эйнштейна обрушилось большое горе - тяжелая душевная болезнь его младшего сына Эдуарда. Старший сын Ганс-Альберт часто приезжал в Берлин, интересовался идеями и жизнью отца, знакомил его со своими работами. Он рассказывал, как на озере близ виллы Капут Эйнштейн катался с ним на яхте и чуть не разбил ее, увлекшись рассказом о единой теории поля. Младший сын давно уже тревожил Эйнштейна. Способный, с поразительной памятью, виртуозный пианист, он отличался патологической неспособностью к конструктивным результатам в науке, а в музыке - к выявлению собственных настроений. Но худшим было другое. Эдуард переходил от болезненно напряженного преклонения перед отцом к еще более болезненным пароксизмам недовольства, к упрекам и жалобам. В начале лета 1930 г. Эйнштейн получил от Эдуарда письмо с истеричными обвинениями. Эйнштейн поспешил в Цюрих. Милева в отчаянии рассказала ему о возрастающей патологической меланхолии Эдуарда. Цюрихские и потом венские психиатры не могли остановить быстрое угасание мозга, болезнь развивалась и надежды на выздоровление не оставалось. Эйнштейн вернулся в Берлин резко изменившимся, сразу постаревшим, подавленным.

Это тяжелое настроение не рассеялось во время нового путешествия. В 1930 г. Эйнштейну предложили прочесть цикл лекций в Калифорнийском технологическом институте в Пасадене в качестве "приглашенного профессора" (visiting-professor). На этот раз Эйнштейну хотелось ограничиться чисто научными беседами. Развитие теоретической физики во второй половине двадцатых годов дало множество поводов для подобных дискуссий.

Но уже в нью-йоркской гавани все обернулось по-иному. Здесь пароход стоял пять дней, которые вспоминались Эйнштейну как сплошной круговорот речей, приемов, интервью, осмотров и снова речей. Пароход не успел причалить, как на палубе появилось больше сотни журналистов, и Эйнштейн, не опомнившись от натиска, обещал одному из них часовую беседу и уже отвечал другому на вопросы: "Как изложить в одной фразе теорию относительности?", "Где ваша скрипка?", "Содействует ли религия миру?" ("Пока - нет", - ответил Эйнштейн), "Каково будущее человечества?" и т.д. Тут же появились фотографы и запечатлели пытавшегося скрыться, немного растерянного, бледного человека в черном пальто с развевающимися седыми волосами.

Перед отъездом из Нью-Йорка в Калифорнию Эйнштейн зашел в собор Черч-Риверсайд на берегу Гудзона. Собор украшен скульптурными изображениями великих людей всех времен и народов. Шестьсот скульптур, и лишь одпа из них изображает здравствующего великого человека - Эйнштейна. Тут Эйнштейну не помогло его постоянное юмористическое отношение к собственной славе. Он был очень смущен и подавлен.

Подавленное состояние было, по-видимому, результатом сложных причин. Эйнштейн не мог забыть трагической судьбы сына. К этому присоединялась усиливавшаяся и внушавшая все большие опасения активность черносотенных организаций. Иррациональная стихия давила на сознание сторонника научного и общественного рационализма. Эйнштейн уже не мог уйти в сферу чистой физической мысли. Он стал пассивнее, поток внешних условностей, требований этикета уже не встречал былого юмористического, но весьма твердого сопротивления. Вероятно, Эйнштейн уже не уходил с такой энергией от повседневности в область научных интересов, потому что новые замыслы, представления о едином поле, критика квантовой механики не могли привести к позитивным результатам, и Эйнштейн в какой-то мере предчувствовал долгий путь дальнейших поисков. Дорога в Калифорнию была в этом отношении достаточно тяжелой.

226

В Пасадене было немало торжественных приемов и речей, но впечатление сгладилось большим числом научных сообщений, коллоквиумов и частных бесед. Неизбежные посещения достопримечательностей и поездки по окрестностям здесь были не такими тягостными, как под Нью-Йорком. В Аризоне Эйнштейн посетил индейское племя. Индейцы присвоили ему титул вождя и подарили индейский костюм. Он получил имя: "Вождь Великой Относительности".

Посетив обсерваторию Маунт-Вилсон, Эйнштейн и Эльза заинтересовались гигантским телескопом. "Для чего нужен такой великан?" - спросила Эльза. "Цель состоит в установлении структуры Вселенной", - ответил директор обсерватории. "Действительно? Мой муж обычно делает это на обороте старого конверта" [47].

47 Seelig, 291.

Весной 1931 г. Эйнштейн покинул Америку, пообещав вернуться в Калифорнийский институт на следующий год и увозя множество сувениров, в том числе упомянутый наряд индейского вождя, гавайские корзины, окаменевшее дерево из Аризоны, но отказавшись от такого подарка, как бесценная скрипка Гварнери. "На ней должен играть настоящий мастер", - сказал Эйнштейн.

Следующая поездка в Пасадену состоялась в конце 1931 г. Эйнштейн провел всю зиму в общении с калифорнийскими физиками. По-видимому, его привлекали не только научные круги Пасадены, но и самые путешествия; они прерывали берлинские впечатления, становившиеся чем дальше, тем более тяжелыми. Кроме того, собственно научные связи с привычной средой европейских физиков становились менее необходимыми. Младшее поколение, увлеченное успехами квантовой механики, шло по новой дороге, которая казалась тогда далекой от пути Эйнштейна. Путешествия, общение с новой средой, участие в новых начинаниях становились все более существенными для Эйнштейна. По дороге в Америку он занес в свой дневник: "Я решил покончить с берлинской оседлостью и стать перелетной птицей на весь остаток жизни. Чайки по-прежнему эскортируют корабль в своем непрестанном полете. Они - мои новые коллеги" [48].

48 Michelmore, 163.

227

В Калифорнии Эйнштейн пробыл всю зиму, а весной 1932 г. вернулся в Берлин. Обстановка в Германии и международная обстановка в Европе вызвала у него новый подъем политической активности. В мае Эйнштейн отправился в Женеву, где происходила конференция по вопросам разоружения. Приведем несколько выдержек из корреспонденций Конрада Берковичи, публиковавшихся в американском журнале "Пикчериэл Ревыо".

Берковичи рассказывает, как на заседании конференции стало известно о приезде Эйнштейна и множество делегатов и почти все корреспонденты вышли на ступени Дворца мира, чтобы встретить ученого.

"Это было удивительным зрелищем. По широким ступеням дворца тяжело поднимался человек с серебряными волосами. Его сопровождали на почтительном отдалении сотни людей. Корреспонденты, даже не раз встречавшие Эйнштейна, не проявляли бесцеремонности, столь характерной для них даже при встречах с коронованными особами. Корреспонденты остановились в нескольких шагах от Эйнштейна. Он обернулся и сказал, что встретится с ними позже. Затем Эйнштейн вошел в зал заседаний. Докладчик, говоривший о деталях воздушной войны, приостановился на мгновение, затем продолжал свою речь. Эта секунда молчания произвела на всех сильное впечатление, большее, чем если бы Эйнштейна встретили овацией. Все смотрели на Эйнштейна и видели в нем олицетворение Вселенной. Он обладал сверхчеловеческим обаянием".

Фраза об олицетворении Вселенной в какой-то мере передает весьма распространенное ощущение. Очень многие видели в Эйнштейне олицетворение науки, ищущей и находящей вселенскую гармонию, рациональную гармонию мироздания, ассоциирующуюся в глазах широких кругов с общественной гармонией.

Некоторые выступления на конференции произвели на Эйнштейна тягостное впечатление. Он понимал, что для предотвращения войны нужны не либерально-пацифистские разглагольствования, а действительное разоружение. Берковичи через несколько часов увидел Эйнштейна,

228

взволнованного, с гневным взглядом. Портье в гостинице рассказал Берковичи, что Эйнштейн после возвращения из Дворца мира непрерывно играл на скрипке, извлекая из нее звуки, пронизанные гневом и болью, и прерывая игру взволнованными восклицаниями.

Беседа Эйнштейна с Берковичи началась с тяжелых обвинений в адрес государственных деятелей, прикрывавших псевдомиролюбивыми речами действительную подготовку войны.

"Они обманули нас, - говорил Эйнштейн. - Они оставили нас в дураках. Сотни миллионов людей в Европе и Америке, миллиарды людей во всем мире, так же как миллиарды, которым предстоит родиться, подвергались и подвергаются обману и предательству, угрожающим их жизни, здоровью и благополучию" [49].

49 Michelmore, 167-168.

Реакционные круги в Европе отвечали Эйнштейну растущей ненавистью. И не только в Европе. Накануне третьей поездки в Пасадену Эйнштейн услышал американские голоса в давно известном ему расистско-клерикальном хоре. Предыдущие выезды в Америку оформлялись без его участия: вся процедура выдачи виз выполнялась самим американским посольством. На этот раз получилось иначе. Посла в это время не было в Берлине, и дело попало в руки сотрудника, который вызвал к себе Эйнштейна и потребовал сведений о цели поездки, о политических взглядах и связях. Эйнштейн возмутился. Он заявил, что не поедет в Америку, и покинул посольство. Это вызвало переполох, всю ночь шли переговоры с Вашингтоном, и наутро визу доставили Эйнштейну с нарочным домой.

Быть может, рвение чиновника было подогрето письмом, копия которого имелась в посольстве. "Женская патриотическая корпорация" Америки направила в Государственный департамент протест против приезда Эйнштейна, которого она обвиняла в пацифизме и коммунизме. Это вызвало возмущение всей Америки. Вместе с визой Эйнштейн получил кипу телеграмм с просьбой не обижаться на сотрудника посольства и взбунтовавшихся дам.

229

По поводу выступления "Женской патриотической корпорации" он написал:

"Никогда еще я не получал от прекрасного пола такого энергичного отказа, а если и получал, то не от стольких сразу. Но разве они не правы, эти бдительные гражданки: разве можно открывать дверь человеку, который пожирает капиталистов с таким же аппетитом, с каким греческий Минотавр пожирал в свое время прелестных греческих девушек, и, сверх того, настолько низок, что отвергает всякого рода войну, кроме неизбежной войны с собственной женой. Поэтому обратите внимание на ваших умных и патриотических жен и вспомните, что столица могущественного Рима была однажды спасена гоготанием ее преданных гусей" [50].

50 Comment je vois Ie monde, 57.

В конце 1932 г. Эйнштейн и Эльза покинули Берлин и направились в Пасадену.

Нацистский режим в Германии

Евангелие силы и угнетения, господствующее сейчас в Германии, угрожает свободе европейского континента. Эту угрозу нельзя устранить лишь моральным оружием, ей нужно противопоставить организованную мощь.

Эйнштейн (1933)

Великие рационалисты XVIII в. искали в природе объективную логику и находили ее в универсальной причинной связи, в детерминизме, управляющем явлениями природы. Они не ограничивались этим и требовали, чтобы в человеческом обществе царствовали логика и разум, следовательно, право и справедливость. Мишенью их критики был весь арсенал иррационального: "верую, ибо абсурдно", нетерпимость, аргументы костра и плахи против аргументов логики и разума.

В тридцатые годы нашего века демон иррационального поднялся во весь рост. Он попытался взять реванш в войне с разумом. Одним из элементов программы Гитлера была ликвидация объективных и логических критериев в науке. Паука должна исходить не из эксперимента и не из логической связи согласованных с экспериментом умозаключений; она должна исходить из воли диктатора и из преподанных им критериев. Таким критерием оказалась прежде всего расовая принадлежность каждой научной концепции. Этому критерию не удовлетворяло теоретическое мышление в целом. Нацистский министр просвещения Бернард Руст заявил как-то: "Национал-социализм не является врагом науки, он враг только теории" [1].

1 Frank, 233.

231

Теория относительности с ее явной рационалистической тенденцией и явным признанием объективности мира была крайне одиозной в глазах нацистов. Ленард и Штарк поняли, что теперь пришло время реванша за бесславный финал их атак в давние годы на теорию относительности и на Эйнштейна. В 1933 г. Ленард в "Volkischer Beobachter" писал: "Наиболее важный пример опасного влияния еврейских кругов на изучение природы представляет Эйнштейн со своими теориями и математической болтовней, составленной из старых сведений и произвольных добавок. Сейчас его теория разбита вдребезги - такова судьба всех изделий, далеких от природы. Но ученые с солидными в прошлом трудами не могут избежать упрека: они допустили, чтобы теория относительности могла найти место в Германии. Они не видели или не хотели видеть, какая это ложь, выдавать Эйнштейна - в науке и в равной степени вне ее - за доброго немца" [2].

Позже Ленард в речи на открытии нового физического института заявил: "Я надеюсь, что институт станет оплотом против азиатского духа в науке. Наш фюрер изгоняет этот дух из политики и политической экономии, где он называется марксизмом. Но в результате коммерческих махинаций Эйнштейна этот дух сохраняет свои позиции в естествознании. Мы должны понять, что недостойно немца быть духовным последователем еврея. Науки о природе в собственном смысле имеют целиком арийское происхождение, и немцы должны сегодня снова находить собственную дорогу в неизвестное" [3].

2 Frank, 232.

3 Ibid.

Расовая неполноценность теории доказывалась, помимо персональной ссылки, ссылкой на ее абстрактность: она далека от связи с непосредственным наблюдением - связи, характеризующей "арийскую физику". Впрочем, практика нацистского разгрома науки опиралась не на эти изыскания, а на проверку расовой принадлежности родителей и дедов ученых, их криминальных связей с расово неполноценными коллегами и их взглядов.

Чистка немецких университетов и расправа с наукой в Германии развернулись, когда Эйнштейн был уже вне досягаемости для штурмовых отрядов и тайной полиции. С 1930 г. он был "приглашенным профессором" Калифорнийского технологического института.

232

Весной 1932 г., как раз в то время, когда Гинденбург был избран президентом Германии, Эйнштейн вернулся в Берлин. В вилле Капут обсуждали дальнейшие события - отставку Брюнинга, назначение Папена, выдвижение на арену Шлейхера. Эйнштейн видел, что финансовые магнаты расчищают Гитлеру путь к власти. Уезжая с женой в Калифорнию, где он должен был снова провести зиму, Эйнштейн, покидая виллу Капут, сказал Эльзе:

"- На этот раз посмотри на нее хорошенько.

- Почему?

- Ты ее больше не увидишь".

Гитлер пришел к власти, когда Эйнштейн был уже в Калифорнии. В разгар "очищения" германских университетов, зимой 1932-1933 г., Эйнштейн приехал из Пасадены в Нью-Йорк и явился к германскому консулу. Тот объявил, что Эйнштейну ничто не угрожает в Германии, где новое правительство действует в духе справедливости. "Если вы не чувствуете себя виновным, - сказал он, - с вами в Германии ничего не случится". Эйнштейн заявил, что он не вернется в Германию, пока там сохранится нацистский режим. Когда официальная беседа закончилась, консул сказал Эйнштейну: "Теперь мы можем говорить как человек с человеком, и я могу вам сказать, что вы поступаете именно так, как и следует" [4].

Весной 1933 г. Эйнштейн вернулся в Европу и поселился в Бельгии, в приморском местечке Ле Кок, близ Остенде.

Королева Елизавета, давняя поклонница идей Эйнштейна, король и правительство стремились оберегать жизнь Эйнштейна от возможных покушений из-за близкой границы. Стража охраняла его день и ночь. Летом 1933 г. Филипп Франк, заехав по дороге в Остенде, направился в Ле Кок и спросил у одного из местных жителей, где живет Эйнштейн. Власти запретили населению Ле Кока давать кому бы то ни было информацию о местопребывании Эйнштейна, поэтому вопрос Франка поставил на ноги охрану. Когда Франк увидел, наконец, Эльзу Эйнштейн, она была уже напугана сообщением о приближении предполагаемого убийцы [5].

4 Frank, 233.

5 Ibid., 240.

233

Все эти предосторожности, как ни надоедали они Эйнштейну, были вполне оправданны. Эйнштейн был первым номером в списке ученых, которым угрожали столь частые близ границ Германии нападения нацистских агентов. Поэтому помимо государственной стражи его жизнь охраняли ближайшие друзья.

В Ле Коке Эйнштейн занимал небольшую виллу Савояр, в которой жили, кроме него и Эльзы, Марго и Эллен Дюкас. Марго жила здесь недолго. Она успела бежать из Германии, переслав за границу через французское посольство часть личного архива Эйнштейна.

Антонина Валлентен ранней весной 1933 г. посетила Ле Кок и написала в своих воспоминаниях:

"В том году весна задержалась. Небо, еще серое и зимнее, давило своей тяжестью. Серебристые дюны были как бы подметены резким ветром. Свинцовое море билось о берег... Домик отзывался, как раковина, на все звуки: скрип шагов, звон посуды, стук пишущей машинки..."

Эйнштейна она застала в обычном состоянии. Он был поглощен научными интересами и, как всегда, смеялся; на сей раз - над невзгодами. "Если бы большое дерево могло смеяться, качая могучими ветвями, оно смеялось бы как Эйнштейн" [6].

Антонина Валлептеп сообщила Эльзе новости, которые требовали серьезного внимания. Она показала изданный в Германии большой альбом с фотографиями противников гитлеровского режима. Альбом открывался фотографией Эйнштейна с надписью, где список преступных деяний начинался созданием теории относительности и предшествовал фразе: "Еще не повешен" [7].

Эльза боялась провокаций. Она рассказывала Франку о визите некоего бывшего штурмовика, который хотел отдать Эйнштейну - предполагаемому главе антифашистской эмиграции - секретные документы за крупную сумму [8]. Приходилось опасаться не только провокаций, но и похищения или убийства.

6 Vallentin A. Le drame d'Albert Einstein, p. 178-179.

7 Ibid., p. 181.

8 Frank, 242-243.

234

В беседе с Франком Эйнштейн сказал, что отъезд из Берлина освободил его от какого-то постоянного, сковывающего чувства. Эльза Эйнштейн возразила, что в Берлине Эйнштейн чувствовал себя хорошо и с удовлетворением отзывался о среде берлинских физиков. "Да, - подтвердил Эйнштейн, - в чисто научном отношении жизнь в Берлине была приятной. Но я все время ощущал какую-то тяжесть и предчувствовал, что все тут плохо кончится" [9].

Еще до этого Эйнштейн вышел из состава Берлинской Академии наук. Он знал, что академия под давлением нацистов исключит его из числа своих членов. Подобный акт был бы очень тяжелым испытанием для некоторых ученых, оставшихся в Германии, прежде всего для Планка. Протест против исключения Эйнштейна поставил бы их под удар. Согласие опозорило бы их. Чтобы избавить своих друзей от подобного испытания, Эйнштейн сообщил Берлинской академии, что при существующем правительстве он не может служить Пруссии и слагает с себя обязанности прусского академика.

В Академии не знали, что делать. Нернст заявил, что Прусская академия, которая гордится такими именами своих членов-французов, как Вольтер, Д'Аламбер и Мопертюи, не может обязать своего члена - великого математика, чтобы он проникся немецким национальным духом. Под влиянием нацистов Берлинская Академия наук обвинила Эйнштейна в деятельности, направленной против Германии: он-де распространяет сведения о зверствах, творимых в этом государстве, вместо того чтобы защищать его от подобных обвинений. "Одно Ваше слово в защиту Германии, - писала Эйнштейну Академия, - произвело бы сильное впечатление за границей". Эйнштейн ответил, что "слово в защиту Германии", которого от него добиваются, зачеркнуло бы борьбу за справедливость и свободу, которую он вел всю жизнь, и было бы направлено против принципов, которым Германия обязана своим почетным местом в цивилизованном мире. "Таким заявлением я косвенно поддержал бы моральное одичание и разрушение культурных ценностей" [10].

9 Frank, 241-242.10 Einstein on Peace. Ed. by A. Nathan a. H. Norden. New York, 1960, p. 216.

235

Макс Планк был слишком основательно опутан классовыми и сословными предрассудками, чтобы понимать в

ту пору, что происходит в Германии. У него были иллюзии относительно "временных эксцессов" при новом режиме, и он даже советовал одному профессору, собравшемуся бежать из Германии, взять вместо этого годичный отпуск и вернуться, когда все войдет в колею. Чтобы сохранить для Института кайзера Вильгельма ученых, подлежащих изгнанию, он обратился непосредственно к Гитлеру. Тот в обычном для него, но совершенно неожиданном для Планка истеричном тоне кричал о "грандиозной цели" - уничтожении врагов рейха, от которой он не откажется... Планку пришлось стать свидетелем разгрома немецкой науки, и Эйнштейн был доволен, что не возложил на него дополнительной тяжести.

Лето 1933 г. Эйнштейн провел в Ле Коке. В начале сентября бельгийская полиция объявила, что он уплыл на частной яхте в Южную Америку. Это сообщение было рассчитано на то, чтобы сбить со следа возможных нацистских агентов. В действительности Эйнштейн отплыл в Англию, высадился в Норфолке и в закрытой карете был отвезен в поместье одного из своих английских почитателей. Здесь Эйнштейн жил в уединенном бревенчатом доме. Окрестности патрулировались вооруженным верховым отрядом, состоявшим, чтобы не привлекать внимания, из девушек.

В конце сентября Эйнштейна сразила весть о самоубийстве Эренфеста. Мы увидим вскоре, как Эйнштейн объяснял самоубийство Эренфеста: он считал основной причиной не чисто личную трагедию, а разрыв между запросами современной физической мысли и возможностями их удовлетворения. Вероятно, уже в 1933 г. к ощущению утраты самого близкого друга присоединялись мысли об одиноком и тяжелом пути в науке, который предстояло пройти Эйнштейну. Присоединялись в мучительные мысли о социальной дисгармонии и бедствиях народов в Европе - ведь никто из естествоиспытателей его поколения не отличался таким чувством социальной ответственности, как Эйнштейн.

Воспоминания людей, встречавших Эйнштейна в конце 1933 г., рисуют его крайне удрученным. Грация Шварц - жена бывшего германского консула, встретившая Эйнштейна в октябре 1933 г. в Америке, вспоминает: "Как будто что-то умерло в нем. Он сидел у нас в кресле, накручивая на палец белые пряди своих волос, говорил задумчиво о различных предметах... Он больше не смеялся" [11].

11 Michelmore, 195.

236

Между тем в Германии продолжался и усиливался террор. Уже в марте 1933 г. на вилле Капут появилась полиция. Имущество Эйнштейна было конфисковано (оно якобы было предназначено, сообщила полиция, для финансовой поддержки коммунистического движения). Вскоре работы Эйнштейна, в том числе статьи о теории относительности, были публично сожжены вместе с другой "неарийской и коммунистической литературой" в Берлине, в сквере перед Государственной оперой.

Нужно заметить, что в годы нацистского режима некоторые профессора разъясняли студентам содержание теории относительности. Они не упоминали ни имени Эйнштейна, ни названия теории и большей частью приводили формулы и выводы без изложения основной концепции. Среди некоторых физиков циркулировал план избавления от антирелятивистской опеки Ленарда: они надеялись скомпрометировать чистоту его собственного происхождения, порывшись в архивах Братиславы, где жили предки маститого адепта арийской физики.

Принстон

Я Вам пишу, чтобы узнать, существуете ли Вы в действительности.

(Из письма, присланного Эйнштейну школьницей из Британской Колумбии)

Когда Нернст и другие немецкие ученые добивались от Вильгельма Второго организации в Берлине специального научного учреждения, занимающегося наиболее крупными естественнонаучными проблемами, они имели в качестве образца аналогичные учреждения в Америке. Новый этап научно-технического прогресса требовал подобных институтов во всех странах, но форма их, как уже говорилось, соответствовала условиям и традициям: в Германии берлинский институт получил имя кайзера, который взял на себя заботу о средствах; в Америке исследовательские институты, если они непосредственно не принадлежали фирмам, финансировались королями индустрии. В течение двадцатых годов развитие науки в еще большей степени требовало организационного выделения исследований, наиболее широких по поднятым проблемам и выполняемых наиболее крупными теоретиками. В 1930 г. Луис Бамбергер и вдова Феликса Фульда, брат и сестра, владевшие миллиардными капиталами, попросили у Флекснера - известного деятеля просвещения и реформатора школ в Америке - совета и помощи в организации нового научного института. Флекснер заметил, что в Америке достаточно обычных исследовательских институтов, и предложил создать учреждение нового типа. Он стал фактическим организатором этого учреждения, названного Институтом высших исследований (Institut for Advanced Study),

238

Флекснер хотел полностью освободить группу крупнейших ученых от каких-либо педагогических и административных обязанностей и от всяких материальных забот. Они должны были заниматься наиболее высокими и общими проблемами и образовать ядро института. Вокруг них, предполагал Флекспер, можно будет собрать талантливых молодых ученых. В циркулярных письмах, разъяснявших смысл и задачи нового института, особенно подчеркивалась полная независимость ученых, приглашенных в проектируемый институт. Последний, по словам Флекснера, должен стать "гаванью, в которой ученые могли бы рассматривать мир как свою лабораторию, не погружаясь в Малынтрем непосредственного общения с ним" [1].

1 Frank, 268.

Флекснер решил, что для начала ядром института должны стать ученые, разрабатывающие проблемы математики. Первым местопребыванием его стала часть Файн^ Холла - здания Математического факультета Принстонского университета. В этом здании готического стиля, напоминающем английские университеты, окруженном тенистыми деревьями, помещался Институт высших исследований в течение десяти лет. В 1940 г. Институт покинул Файн-Холл и университетскую территорию и разместился в собственном, более уединенном здании на расстоянии получаса ходьбы от Принстона.

В январе 1932 г. в Пасадене Милликен посоветовал Флекснеру поговорить о планах Института высших исследований с Эйнштейном, который тогда находился в Калифорнии. Флекснер рассказывал, как после некоторых колебаний он решил подойти к Эйнштейну и как быстро ощутил очарование его непринужденной общительности.

Вскоре они встретились уже в Европе, в Оксфордском университете. На этот раз Флекснер предложил Эйнштейну работать в Институте высших исследований. Они договорились о продолжении начатого разговора.

Этот разговор состоялся. Эйнштейн уже понимал, что дальнейшее пребывание в Германии для него невозможно. У него еще сохранились некоторые надежды - он говорил Флекснеру, что, быть может, часть года будет проводить в Берлине, - но надежды эти были очень слабыми.

239

Они исчезли в 1933 г. В октябре Эйнштейн приступил к работе в Институте высших исследований в Принстоне. Свое положение в Институте Эйнштейн считал несколько неудобным: нельзя, как он говорил, получать деньги за исследовательский труд, который является внутренней потребностью, без педагогических обязанностей. Эйнштейн привык рассматривать как лично ему принадлежащее только то время, которое оставалось после лекций, бесед со студентами, экзаменов, заседаний и т.д. Таких обязанностей в Берлине у него было значительно меньше, чем в Праге и Цюрихе, но все же они оставались. В Принстоне их почти не было. Он руководил небольшой группой молодых ученых. Среди них были Вальтер Майер, которого Эйнштейн привез из Германии (он был ассистентом Эйнштейна в 1929-1934 гг.), Натан Розен (в 1934- 1935 гг.), Петер Бергман (в 1937 - 1938 гг.) и Валентин Баргман (в 1938-1943 гг.) - созвучие фамилии Бергмана и Баргмана было в Принстоне неиссякаемым источником недоразумений и шуток. Были здесь Эрнст Штраус (в 1944-1947 гг.), Джон Кемени (в 1948-1949 гг.), Робер Крайхман (в 1950 г.) и Брурия Кауфман (в 1951 - 1955 гг.).

В 1936-1938 гг. ассистентом Эйнштейна был Леопольд Инфельд, с которым мы вскоре встретимся снова. Со старшим поколением принстонских коллег Эйнштейн виделся реже.

Следует заметить, что неловкость, которую Эйнштейн чувствовал, получая жалованье за чисто научную работу, имела, быть может, неосознанное, но глубокое основание. Он всегда хотел и качестве источника средств к существованию иметь какое-то занятие, не совпадающее с основной исследовательской деятельностью. Пример Спинозы - гранильщика алмазов - был для него весьма привлекательным. На худой конец он предпочел бы получать деньги как профессор, а исследованиями заниматься в свободное время, никому, кроме него, не принадлежащее. Несмотря на многочисленные заявления организаторов Принстонского института о полной свободе ученых, Эйнштейн предпочел бы обеспечить свою независимость какой-то современной модификацией положения Спинозы.

240

Но это было невозможно. Проблемы единой теории доля захватили Эйнштейна с такой силой, что он не мог отказаться от открывшейся возможности уделить им все время. Он и хотел отдавать им все время. Каждое утро Эйнштейн отправлялся в Файн-Холл (а после 1940 г. - в новое здание института), встречал там своих ближайших коллег, узнавал, что они сделали (большей частью речь шла о преодолении математических трудностей), обсуждал пути дальнейшей работы, возврашался к исходным позициям, искал новые. Потом он отправлялся домой и продолжал обдумывать те же проблемы.

Его отрывали от этих размышлений. Очень многие ждали от Эйнштейна совета, помощи, выступлений. В большинстве случаев они получали и то, и другое, и третье. Создавалась очень сложная ситуация: человек, стремившийся к одиночеству, общался с большим числом людей, чем кто бы то ни было из ученых во всем мире. Такая ситуация была связана не только с внешними обстоятельствами, но и с внутренними основами мировоззрения ученого.

Эйнштейну пришлось однажды выступить в Лондоне, когда там обсуждали судьбу ученых - эмигрантов из Германии. Нужно было найти им работу. Эйнштейн предложил в качестве наиболее подходящего места для ученого должность смотрителя маяка. У другого такая неожиданная рекомендация была бы совершенно неуместной. Но когда Эйнштейн говорил об одиночестве на маяке, способствующем исследовательской мысли, это было выражением собственной давней мечты. Эйнштейн многим жаловался на повседневные заботы, отвлекающие от пауки. Тут было еще одно обстоятельство - пожалуй, более важное. Эйнштейн чувствовал необходимость полной независимости в научной деятельности. Это был уже упоминавшийся "спинозовский" мотив.

"Он много раз говорил мне, - вспоминает Инфельд, - что охотно работал бы физически, занимался каким-нибудь полезным ремеслом, например сапожным, но не хотел бы зарабатывать, преподавая физику в университете. За этими словами кроется глубокий смысл. Они выражают своего рода "религиозное чувство", с каким он относился к научной работе. Физика - дело столь великое и важное, что нельзя выменивать ее на деньги. Лучше зарабатывать на жизнь трудом, например, смотрителя маяка или сапожника и держать физику в отдалении от вопросов хлеба насущного. Хотя такая позиция должна казаться наивной, она тем не менее характерна для Эйнштейна" [2].

241

Эйнштейну хотелось оказаться на маяке и для того, чтобы освободиться от посещений и просьб, не оставлявших времени для работы. Любовь к людям не носила у него абстрактного характера, Эйнштейн не принадлежал к числу мыслителей, чей интерес к судьбам человечества сочетается с безразличием к судьбе конкретного человека, с которым он сталкивается в повседневной жизни. Но не повседневной жизнью была заполнена его душа, и не эта постоянная забота о сотнях обращавшихся к нему людей занимала его мысли. Они были прикованы к надповседневному, и его тянуло к работе всегда, во всякую минуту.

"Хотя только физика и законы природы вызывали у Эйнштейна подлинные эмоции, он никогда не отказывал в помощи, если находил, что нужна помощь, и считал, что эта помощь может быть эффективной. Он писал тысячи рекомендательных писем, давал советы сотням людей, часами беседовал с сумасшедшим, семья которого написала Эйнштейну, что он один может помочь больному. Он был добр, мил, разговорчив, улыбался, но с необычайным, хотя и тайным, нетерпением ожидал минуты, когда наконец сможет вернуться к работе" [3].

2 Успехи физических наук, 1956, 59, вып. 1, с. 151.

3 Там же, с. 152.

Эта постоянная тяга к одиночеству не сводится к заполненности сознания ожидающими решения научными задачами. Это более глубокое чувство. В своей, ужо неоднократно упоминавшейся книге "Mein Weltbild" ("Comment je vois le monde") Эйнштейн посвятил вводные страницы своему отношению к людям. Он говорит о противоречии между страстным интересом к социальной справедливости и стремлением к одиночеству.

"Страстный интерес к социальной справедливости и чувство социальной ответственности противоречили моему резкому предубеждению против сближения с людьми и человеческими коллективами. Я всегда был лошадью в одноконной упряжке и не отдавался всем сердцем своей стране, государству, кругу друзей, родным, семье. Все эти связи вызывали у меня тягу к одиночеству, и с годами стремление вырваться и замкнуться все возрастало.

242

Я живо ощущал отсутствие понимания и сочувствия, вызванное такой изоляцией. Но я вместе с тем ощущал гармоническое слияние с будущим. Человек с таким характером теряет часть своей беззаботности и общительности. Но эта потеря компенсируется независимостью от мнений, обычаев и пересудов и от искушения строить свое душевное равновесие на шатких основах" [4].

Одинокий и тянущийся к одиночеству созерцатель - и страстный поборник социальной справедливости. Открытая душа, живая искренняя радость при общении с людьми - и в то же время нетерпеливое стремление уйти от людей (будь то случайные собеседники, друзья, семья) в свой внутренний мир. Образ Эйнштейна кажется очень противоречивым. И все же в этих противоречиях угадываешь глубокую гармонию.

Прежде всего слово "созерцатель" в применении к Эйнштейну требует существенных оговорок. Оно скорее подошло бы к стороннику "чистого описания", да и то не полностью; на деле каждый ученый не останавливается па феноменологических позициях. Эйнштейн - мастер "жестокого эксперимента", учинявший природе весьма энергичный допрос, подчеркивавший активную сторону научных понятий - не был созерцателем в обычном смысле. Что такое теория относительности, как не преодоление созерцаемой "очевидности" и проникновение в мир процессов, о которых можно судить лишь с помощью активного экспериментирования! Для Эйнштейна процесс познания - это процесс вторжения в природу. Оно неотделимо от перестройки на началах разума и науки жизни людей. Из поисков объективной рациональности, упорядоченности, закономерности, причинной обусловленности мира вытекает стремление к разумному устройству общества. Из страстных поисков мировой гармонии вырастает "страстный интерес к социальной справедливости и чувство социальной ответственности". Но этот интерес и это чувство меньше всего удовлетворяются повседневным общением и повседневной помощью людям. Уже в двадцатые годы тяга к одиночеству, о которой говорил сам Эйнштейн и которую отмечали все знавшие его, сочеталась с большой социальной активностью Эйнштейна.

4 Comment je vois lo monde, 9-10.

243

Переплетение научных и общественных интересов, широкое понимание или хотя бы ощущение новой социальной функции науки было в кругах ученых делом будущего, впрочем, недалекого. И в этих вопросах, как и в собственно физических, Эйнштейн в двадцатые и тридцатые годы как бы общался с физиками середины столетия, интересовавшимися в гораздо большей степени, чем раньше, проблемами, занимавшими Эйнштейна уже в двадцатые годы.

"Общество" Принстона - наиболее респектабельные и добропорядочные представители академической среды - так же мало привлекало Эйнштейна, как и соответствующая элита европейских университетских городов. Даже меньше. Эйнштейн писал королеве Елизавете:

"Принстон - замечательное местечко, забавный и церемонный поселок маленьких полубогов на ходулях. Игнорируя некоторые условности, я смог создать для себя атмосферу, позволяющую работать и избегать того, что отвлекает от работы. Люди, составляющие здесь то, что называется обществом, пользуются меньшей свободой, чем их европейские двойники. Впрочем, они, как мне кажется, не чувствуют ограничений, потому что их обычный образ жизни уже с детства приводит к подавлению индивидуальности" [5].

5 Michelmore, 196-197.

Вообще принстонский период жизни Эйнштейна характеризуется резким сужением непосредственных связей с "ближними" и таким же резким расширением связей с "дальними" - со средой, далеко стоявшей от профессиональных интересов Эйнштейна. В тридцатые, сороковые и пятидесятые годы Эйнштейн стоит в стороне от того, что интересует подавляющее большинство физиков. Он занимается весьма сложными математическими построениями, но они подчинены одной задаче, колоссальной по общности и трудности. Эйнштейн пытается построить единую теорию поля, где все взаимодействия частиц и само их существование вытекает из единых законов. Выполнение этого замысла не встречало одобрения физиков, вовсе не было понятно непосвященным и в целом не удовлетворяло и самого Эйнштейна. Но замысел вызывал интерес у многих. При всей сложности сменявших друг друга конкретных вариантов решения задачи все время

244

сохранялась общая схема: мир един, мир рационален, мир подчинен единым законам бытия. У Эйнштейна эта схема была связана с обобщением колоссальных по объему физических и математических построений. Но это не мешало широким кругам угадывать величие замысла.

Ощущение этой очень широкой аудитории, не воспринимающей деталей и специальных вопросов, но тянущейся к идее гармонии мироздания, это ощущение становилось у Эйнштейна все интенсивнее.

Напротив, "ближних" в прямом смысле у Эйнштейна становилось все меньше. В этом отношении Эйнштейн чувствовал себя очень одиноким.

Никто и ничто не могло заменить ему Эльзы. Вскоре после приезда в Принстон Эльза должна была вернуться в Европу: в Париже умирала ее старшая дочь Ильза.

После ее смерти Эльза сразу постарела до неузнаваемости, она не расставалась с пеплом дочери, увезла его в Принстон. Ее сопровождала Марго. У Эльзы появились патологические изменения в глазах.

Это оказалось симптомом тяжелого поражения сердца и почек. Эльзу уложили в постель. Марго, уезжавшая на несколько дней в Нъю-Йорк, нашла свою мать совершенно переменившейся. "Она тут чуть не сложила оружие", - сказал Эйнштейн, очень подавленный, бледный, с безысходной тоской во взгляде.

Эльзе становилось хуже. Она писала Антонине Валлентен об Эйнштейне: "Я никогда не подумала бы, что так дорога ему, и сейчас рада этому" [6].

На лето Эйнштейн снял красивый старый дом недалеко от Монреаля на берегу озера. Он возобновил прогулки под парусом. В прекрасном канадском лесу Эльза почувствовала себя немного лучше. Все ее мысли по-прежнему принадлежали мужу. Она писала Антонине Валлентен: "Он в прекрасной форме и в последнее время решил важные задачи. Пройдет много времени, прежде чем освоят все, что он сделал, и начнут этим пользоваться. Сам он думает, что новые результаты - самое великое и глубокое из всего, что им создано" [7].

6 Valient in A. Le draine d'Albert Einstein, p. 190.

7 Ibid., p. 190-191.

Затем болезнь быстро пошла к роковому исходу. В 1936 г. Эльза умерла.

245

Эйнштейн продолжал ту же жизнь, что и раньше. Он ходил по аллеям Принстона, между напоминающими старую Англию домами из красного кирпича. Он сидел в своем рабочем кабинете, разрабатывая математический аппарат единой теории поля. Но Эйнштейн очень изменился. Когда-то, уже в Принстоне, Эльза говорила: "...Все мы меняемся с годами, потому что подвластны желаниям и внешним воздействиям. Альбертль, напротив, сейчас такой, каким он был в детстве". Но в действительности он уже в начале тридцатых годов потерял былую жизнерадостность, а теперь, после смерти Эльзы, у него стало еще чаще появляться чувство одиночества и грусти.

Этим чувством, усилившимся в сороковые годы, проникнуты письма, посланные Эйнштейном друзьям в ответ на поздравления с семидесятилетием, исполнившимся в марте 1949 г. Он в это время только что поднялся после тяжелой операции в области живота. Подозрения, вызвавшие операцию, к счастью, не оправдались, но надолго осталась слабость. Состояние Эйнштейна не препятствовало обычному юмору, сердечности, интересу к окружающим и прежде всего концентрации всех сил на коренных проблемах единой теории поля. Но общее настроение было минорным.

В конце марта 1949 г. в ответ на поздравления Эйнштейн писал Соловину:

"Я совершенно растроган Вашим сердечным письмом, которое так резко отличается от множества других писем, свалившихся на меня по этому печальному поводу. Вам кажется, что я взираю на труд моей жизни со спокойным удовлетворением. Вблизи все это выглядит иначе. Нет ни одного понятия, в устойчивости которого я был бы убежден. Я не уверен вообще, что нахожусь на правильном пути. Современники видят во мне еретика и одновременно реакционера, который, так сказать, пережил самого себя. Конечно, это мода и близорукость. Но неудовлетворенность поднимается и изнутри. Да иначе и не может быть, когда обладаешь критическим умом и честностью, а юмор и скромность создают равновесие вопреки внешним влияниям..." [8]

8 Lettres a Solovine, 95.

246

Приведенное письмо проливает свет и на настроение Эйнштейна в момент, когда оно написано, и на общие характерные для всей жизни мыслителя особенности его души и творчества. Основное - неудовлетворенность результатами разработки единой теории поля. Но вместе с тем письмо бросает свет на весь творческий путь Эйнштейна. Как уже говорилось, Эйнштейн был не только далек от позы пророка, излагающего раз навсегда данную абсолютную истину. Само содержание научных идей Эйнштейна исключало их абсолютизирование. Этому содержанию соответствовали критический ум, честность, скромность и юмор - все эти аптидогматические силы. Поэтому таким широким был резонанс, вызванный теорией Эйнштейна в эпоху общей переоценки ценностей.

Но переоценка ценностей не означает отказа от ценностей, относительность не означает абсолютного релятивизма - она сама относительна, критический ум, скромность и юмор не приводят к скептицизму и нигилистическому отрицанию. Подлинно антидогматическая мысль не догматизирует самое отрицание, она создает вечные ценности, вечные не в смысле неподвижности, а в смысле сохранения в изменяющихся формах.

Эта общая позиция Эйнштейна была глубоко оптимистической по своему существу, но на нее неизбежно накладывались колебания, сомнения, неуверенность - все, что отличает живую, ищущую мысль от схемы. Стихией Эйнштейна было однозначное и отчетливое отображение мира. Он воспринимал полутона и полутени в картине мира, но не они, а строгий рисунок доставлял ему наибольшее удовлетворение. Когда полутени набегали на рисунок и он переставал быть уверенным, однозначным и точным, это вызывало неудовлетворенность. Здесь - психологическая сторона коллизии между строгим рисунком теории относительности и полутенями квантовой физики, коллизии, логический аспект которой будет рассмотрен позже.

В конце сороковых и начале пятидесятых годов психологический тонус Эйнштейна снижался потерями близких людей. Они заставляли его вспоминать об ушедших еще в тридцатые годы друзьях и соратниках. Эйнштейн в это время часто возвращается к воспоминаниям о Пауле Эренфесте, покончившем с собой в 1933 г. Его самоубийство представляется Эйнштейну в некоторой степени результатом конфликта между научными интересами поколений и в еще большей степени между вопро-

247

сами, которые наука ставит перед ученым, и ответами, которые он может найти. Непосредственная причина самоубийства Эренфеста была чисто личной, но более глубокая причина состояла в трагической неудовлетворенности ученого.

В статье, написанной в 1934 г., вскоре после смерти Эренфеста, и посвященной памяти друга и характеристике ученого, Эйнштейн говорил, что выдающиеся люди сравнительно часто уходят добровольно из жизни, не в силах противостоять ее ударам и внешним конфликтам.

"Отказ прожить жизнь до естественного конца вследствие нестерпимых внутренних конфликтов - редкое сегодня событие среди людей со здоровой психикой; иное дело среди личностей возвышенных и в высшей степени возбудимых душевно. Такой внутренний конфликт привел к кончине нашего друга Пауля Эренфеста. Те, кто был знаком с ним так же хорошо, как было дано мне, знают, что эта чистая личность пала жертвой главным образом такого конфликта совести, от которого в той или другой форме не гарантирован ни один университетский профессор, достигший пятидесятилетнего возраста" [9].

Этот конфликт состоит в недостаточности сил ученого для решения тех задач, которые ставит перед ним наука. Эренфест обладал необычайно ясным пониманием этих задач. Но он считал свои конструктивные возможности очень малыми по сравнению с критическими способностями.

"В последние годы, - говорит Эйнштейн, - это состояние обострилось из-за удивительно бурного развития теоретической физики. Всегда трудно преподавать вещи, которые сам не одобряешь всем сердцем; это вдвойне трудно фанатически чистой душе, для которой ясность - все. К этому добавлялось все возрастающая трудность приспосабливаться к новым идеям, трудность, которая всегда подстерегает человека, перешагнувшего за пятьдесят лет. Не знаю, сколько читателей этих строк способны понять эту трагедию. Но все-таки именно она была главной причиной бегства из жизни" [10].

9 Эйнштейн, 4, 192.

10 Там же, с. 227.

248

У Эйнштейна разрыв между запросами науки - построением единой теории поля - и возможностями однозначного и ясного ответа не был таким трагическим, каким был разрыв между задачами и решениями у Лоренца и тем более у Эренфеста. Оптимизм Эйнштейна был глубоко органическим. Он был связан с уверенностью в гармонии и познаваемости мира. Преодоленные в 1916 г. трудности построения общей теории относительности и гораздо более тяжелые, так и не преодоленные трудности единой теории поля приносили Эйнштейну немало тяжелых переживаний, но за этим стояло непоколебимое убеждение: как ни сложны, как ни запутаны пути пауки, они ведут к адекватному познанию реальной гармонии бытия. Душевный мир Эйнштейна не был похож на гладкую поверхность тихого озера, он скорее напоминал поверхность моря, по которой пробегает не только рябь, но и большие волны. Под поверхностью в морской толще сохранялись глубинные течения, не возмущаемые никакими бурями. Но эти бури происходили, и Эйнштейн не был тем спокойным небожителем, каким представляют иногда Гёте. Когда Эйнштейн писал о "математических мучениях" при построении единой теории поля и о невозможности довести ее до состояния, допускающего сопоставления с наблюдениями, это были не только напряженные поиски, но и подлинные мучения мысли, осознавшей вопросы, но не нашедшей ответов. В принстонские годы Эйнштейн часто вспоминал о трагедии Эренфеста. Он рассказывал о ней приехавшей в Принстон Антонине Валлентен и вновь говорил о характерном для Эренфеста ощущении конфликта с новым поколением.

Антонина Валлентен прибавляет:

"Он это говорил с острым, но безропотным волнением, потому что подобный конфликт он и сам переживал. Драма, наметившаяся в счастливые годы постоянной связи с современной мыслью, теперь становилась все более напряженной. Это не был разрыв поколений, из которых одно представляет дерзновенную мысль, а другое защищает старое и напоминает неподвижный камень у покинутой дороги. Драма Эйнштейна была драмой человека, который вопреки возрасту следует своим путем, становящимся все более пустынным, в то время как почти все друзья и молодежь объявляют этот путь бесплодным и ведущим в тупик" [11].

11 Vallentin A. Le drame d'Albert Einstein, p. 200.

249

Именно это ощущение заставляло Эйнштейна возвращаться мыслью к ушедшим друзьям. Среди них была Мария Склодовская-Кюри, после смерти которой Эйнштейн писал, что ее моральный облик оказал, быть может, еще большее влияние на науку, чем открытие радия.

"Моральные качества выдающейся личности, - говорит Эйнштейн, - имеют, возможно, большее значение для данного поколения и всего хода истории, чем чисто интеллектуальные достижения. Последние зависят от величия характера в значительно большей степени, чем это обычно принято считать" [12].

Воспоминания об ушедших друзьях и об их душевных драмах вызывали не только тихую, примиренную грусть. Эти душевные драмы были свидетельством большой моральной чистоты, непоколебимой преданности истине, сочувствия людям - качеств, внушающих уверенность в будущем науки и человеческого общества. Мария Склодовская-Кюри принадлежала к числу людей, создававших вокруг себя как бы силовое поле, направлявшее окружающих к идейным интересам.

"К моему великому счастью, в течение двадцати лет мы были связаны с мадам Кюри возвышенной и безоблачной дружбой. Мое восхищение ее человеческим величием постоянно росло. Сила ее характера, чистота помыслов, требовательность к себе, объективность, неподкупность суждений - все эти качества редко совмещаются в одном человеке. Она в любой момент чувствовала, что служит обществу, и ее большая скромность не оставляла места для самолюбования. Ее постоянно угнетало чувство жестокости и несправедливости общества. Именно это придавало ей вид внешней строгости, так легко неправильно понимаемой теми, кто не был к ней близок, - странной строгости, не смягченной каким-либо искусственным усилием" [13].

12 Эйнштейн, 4, 193.

13 Там же.

Теперь, через много лет, к мартирологу науки прибавилось еще одно имя - символ той же возвышенной идейной силы: в начале 1947 г. Эйнштейн узнал о смерти Поля Ланжевена. "Он был для меня одним из самых дорогих друзей, воистину святым и исключительно одаренным", - написал Эйнштейн Соловину [14].

250

От ушедших друзей, собратьев по науке, мысль переносилась к образу Эльзы - о ней Эйнштейн не забывал никогда.

В эти же годы Эйнштейн был вынужден наблюдать медленное угасание своей сестры Майи.

Майя, очень похожая на Альберта девочка, которая стоит рядом с ним, маленьким мальчиком, на мюнхенской фотографии, приехала в Принстон в 1939 г. из Флоренции. Там Майя жила с мужем - сыном преподавателя кантональной школы в Аарау, в которой когда-то учился Эйнштейн. Им хотелось отдохнуть от впечатлений фашистского режима. Муж Майи поехал в Швейцарию, а она решила повидаться с братом.

В Принстоне удивлялись не только сходству наружности, но и поразительному совпадению интонаций, выражения лица и часто даже манеры, которую Франк называет "детской, но в то же время скептической". Оба они - и Альберт, и Майя - во многом оставались теми же детьми, изображенными на упомянутой фотографии.

В 1947 г. Эйнштейн писал Соловину: "Моя сестра чувствует себя субъективно хорошо, но находится уже на склоне пути, ведущего туда, откуда нет возврата. Ее путь склонился раньше, чем у большинства сверстников" [15].

14 Lettres a Solovine, 83.

15 Ibid., 85.

В последующих письмах Эйнштейн рассказывает об ухудшении здоровья Майи. Он проводил много времени у ее постели, читал ей книги - среди них были произведения античных авторов. Летом 1951 г. сестра Эйнштейна умерла.

Теперь самыми близкими людьми для Эйнштейна остались Марго и Эллен Дюкас.

Они жили в двухэтажном коттедже неподалеку от Института высших исследований. По этой улице Эйнштейн направлялся утром в институт, сворачивал на еще более тенистую аллею, которая шла между рощами и лугами до здапия института. Принстонский институт окружен большим парком. Луга перемежаются зарослями орешника, рощами, состоящими из платанов, кленов,

251

лип. Здесь много и фруктовых деревьев, особенно яблонь - осенью аллеи усыпаны плодами. Аллеи переходят в улицы; по обеим сторонам - коттеджи, где живут принстонские профессора. Дом № 112 на Мерсер стрит не выделялся бы среди таких коттеджей, если бы фотографии не сделали его известным большому числу людей во всем мире.

Проход в подстриженной живой изгороди ведет к дверям. За дверью слева деревянная лестница на второй этаж около стены, украшенной сухими стеблями кукурузы.

В рабочем кабинете Эйнштейна стены почти полностью заняты книжными полками. Напротив входа - большое окно в сад. Слева от окна, на боковой стене, - портрет Ганди. В правой стене - дверь, ведущая на террасу, и дверь в спальню Эйнштейна. На этой же стене - прекрасные полотна Иозефа Шарля, портреты Фарадея и Максвелла.

Перед окном - прямоугольный стол, возле него - небольшой столик с трубками и тут же австралийский бумеранг. Ближе к входной двери - круглый стол и кресло.

Эйнштейн писал, сидя в кресле, держа бумагу на колене и разбрасывая по полу исписанные листы.

Общественно-политические выступления Эйнштейна во время войны и в последующие годы были очень личными: в них выражалась не какая-либо четкая программа, а скорее непреодолимая потребность сделать что-либо для людей, для их избавления от страданий. Бертран Рассел, поселившийся в 1943 г. в Принстоне, писал об Эйнштейне:

"Я думаю, его работа и его скрипка давали ему значительную меру счастья, но глубокое сочувствие к людям и интерес к их судьбе предохранили Эйнштейна от неподобающей такому человеку меры безнадежности" [16].

16 Einstein on peace, p. XVI.

Рассел видел, что позиции Эйнштейна были тесно связаны с его моральными качествами. Мысли о значении собственной личности оставались для Эйнштейна такими же далекими, как и пренебрежение к другим людям. Рассел сопоставляет характерное для Эйнштейна отсутствие позы, тщеславия, безучастия, недоброжелательства, ощущения превосходства с его борьбой за самодовлеющую ценность каждого человека, против угнетения и третирования человеческой личности.

252

"Общение с Эйнштейном доставляло необычайное удовлетворение. Несмотря на гениальность и славу, он держал себя абсолютно просто, без малейших претензий на превосходство... Он был не только великим ученым, но и великим человеком".

Рассел заметил характерную черту Эйнштейна: его общественные идеи вытекали из психологических и моральных черт; в сущности, они были некоторым постоянным стремлением к счастью и свободе всех людей, постоянным признанием самодовлеющей ценности человеческой личности. Поэтому они ярче всего выражались в непосредственном общении.

Население Принстона ощущало роль Эйнштейна несколько ярче и предметней, чем люди, никогда не видевшие ученого. Но и последние угадывали его постоянную, тревожную, эмоциональную заботу о человеческом счастье. В этом смысле жители Принстона выражали общее убеждение человечества. Они окружили Эйнштейна атмосферой, о которой трудно дать представление. С одной стороны, фигура Эйнштейна, идущего из его дома в институт или обратно по длинной тенистой дороге, стала обычной, почти частью принстонского пейзажа. Переброситься с Эйнштейном каким-либо замечанием стало для принстонского жителя таким же привычным делом, как беседа с прочими соседями. Кроме того, жители Принстона видели в Эйнштейне легендарную фигуру столетия [17].

В этом смысле они не отличались от одной школьницы из Британской Колумбии, которая прислала Эйнштейну строки: "Я Вам пишу, чтобы узнать, существуете ли Вы в Действительности" [18]. Это впечатление несомненной и в то же время непостижимо легендарной личности очень близко к дошедшему до широких кругов представлению об идеях Эйнштейна: нечто трудно постигаемое по величию, общности и парадоксальности и вместе с тем опирающееся на естественную интуицию каждого человека.

253

Почему в Принстоне, где жили многие выдающиеся ученые, только Эйнштейн был одновременно и самым "своим" и самым легендарным человеком? Мы опять возвращаемся к вопросу о популярности Эйнштейна как характерном симптоме основных черт нашего столетия.

17 Frank, 297.

18 Seelig, 344.

Годы, прожитые Эйнштейном в Принстоне, позволили конкретизировать ответ на этот вопрос. Научные интересы Эйнштейна были чужды в этот период большинству физиков и неизвестны широким кругам. Но они позволяли еще конкретнее почувствовать то, что все угадывали уже в двадцатые годы, - стремление Эйнштейна нарисовать рациональную, объективную, лишенную какого бы то ни было антропоцентризма и какой бы то ни было мистики картину мира - раскрыть в природе царство разума. И тогда и сейчас люди чувствовали также неотделимость рациональных идеалов науки от рациональных общественных идеалов. Легендарным человеком, который хотел увидеть в космосе и построить на Земле царство гармонии, мог быть очень "свой", очень обыкновенный человек. Жители Принстона, видевшие Эйнштейна изо дня в день, догадывались о его историческом подвиге. Люди, никогда не видевшие Эйнштейна, но знакомые с духом его творчества, угадывали черты его личности.

Много материалов о жизни Эйнштейна в Принстоне дают воспоминания Инфельда. Уже говорилось о его знакомстве с Эйнштейном, о встрече в Берлине. В 1936 г. Инфельд был доцентом Львовского университета. В это время над польскими университетами все тяжелее нависала туча реакции, и Инфельд чувствовал, что ему не удастся удержаться в университете. Он написал Эйнштейну и вскоре получил приглашение от Принстонского института; Инфельду была предоставлена небольшая стипендия, с тем чтобы он мог под руководством Эйнштейна вести исследовательскую работу по теоретической физике. Он приехал в Принстон и вскоре позвонил в дверь под номером 209 в Файн-холле, где помещался Институт математики и теоретической физики. Эйнштейн показался ему сильно постаревшим - прошло шестнадцать лет после предыдущей встречи. Но сверкающие, полные мысли глаза собеседника и сейчас поразили Инфельда. Его поразила также молниеносная манера, с которой Эйнштейн сразу начал излагать идею своих последних работ. Он не спрашивал Инфельда о том, когда тот приехал,

254

как доехал и т.д. Но здесь ие было ни грана гелертерской черствости. Инфельд понимал это не только потому, что Эйнштейн с большой сердечностью помог ему в беде. Обаяние задушевной беседы охватило Инфельда и на этот раз. Но душа Эйнштейна была поглощена проблемами "надличного". Эйнштейн начал излагать результаты своих попыток построить единую теорию поля. В это время в комнату вошел Леви-Чивита - один из создателей математических приемов, примененных Эйнштейном в общей теории относительности. Леви-Чивите было тогда около шестидесяти лет. Этот маленький и тщедушный итальянский математик отказался принести присягу в верности фашистскому режиму и нашел убежище в Принстоне. Войдя в комнату, Леви-Чивита хотел сразу же уйти, чтобы не мешать беседе Эйнштейна с Инфель-дом. Больше жестами, чем словами (итальянская жестикуляция давалась ему лучше английской речи), он сообщил о своем намерении. Но Эйнштейн попросил его остаться и принять участие в беседе. Пока Эйнштейн кратко излагал содержание предшествующего разговора, Инфельд с трудом удерживался от смеха, вслушиваясь в англо-итальянскую речь Леви-Чивиты, которая была понятна только потому, что наполовину состояла из формул. Эйнштейн тоже плохо владел английским языком, но все же гораздо лучше своего собеседника. К тому же его фразы становились понятными благодаря спокойной и медлительной манере, выразительным интонациям и, главное, благодаря последовательности и прозрачной ясности содержания.

"Я внимательно наблюдал, - вспоминает Инфельд, - за спокойным Эйнштейном и маленьким, худым, живо жестикулирующим Леви-Чивитой в то время, как они указывали на формулы, написанные на доске, пользуясь языком, по их мнению, английским. Вся эта картина и вид Эйнштейна, то и дело подтягивающего брюки (без пояса и подтяжек), была столь великолепна и комична, что я, вероятно, никогда ее не забуду. Я старался сдержать смех, прибегая к самовнушению.

- Вот ты разговариваешь и обсуждаешь физические проблемы с самым прославленным физиком мира и смеешься, потому что он не носит подтяжек, - думал я. Внушение подействовало, и я удержался от смеха в тот момент, когда Эйнштейн заговорил о своем последнем, еще не опубликованном труде о гравитационных волнах" [19].

255

Забавная картина, которую наблюдал Инфельд, представляет интерес для биографии Эйнштейна. В начале книги уже говорилось, что жизнеописание Эйнштейна не может быть летописью повседневных событий и перечнем житейских деталей, но оно не может быть и схематическим. Чисто личные детали подчеркивают сквозную для жизни Эйнштейна тенденцию ухода от повседневности. Отказ от подтяжек мог быть забавным, но не мог быть смешным. Он был трогательным, и если вызывал улыбку, то вместе с тем напоминал об интеллектуальной жизни, во имя которой Эйнштейн жертвовал респектабельностью. Когда впоследствии один из знакомых спросил Инфельда, почему Эйнштейн не стрижет волос, носит какую-то немыслимую куртку, не надевает носков, подтяжек, пояса, галстука, Инфельд объяснил это стремлением освободиться от повседневных забот.

"Ответ прост, и его легко можно вывести из одиночества Эйнштейна, из присущего ему стремления к ослаблению связей с внешним миром. Ограничивая свои потребности до минимума, он стремился расширить свою независимость, свою свободу. Ведь мы - рабы миллиона вещей, и наша рабская зависимость все возрастает. Мы - рабы ванных комнат, самопишущих ручек, автоматических зажигалок, телефонов, радио и т.д. Эйнштейн старался свести эту зависимость к самому жесткому минимуму. Длинные волосы избавляют от необходимости часто ходить к парикмахеру. Без носков можно обойтись. Одна кожаная куртка позволяет на много лет разрешить вопрос о пиджаке. Можно обойтись без подтяжек точно так же, как без ночных рубашек или пижам. Эйнштейн реализовал программу-минимум - обувь, брюки, рубашка и пиджак обязательны. Дальнейшее сокращение было бы затруднительно" [20].

19 Успехи физических наук, 1956, 59, вып. 1, с. 140-141.

20 Там же, с. 157-158.

Вспоминается одно, в сущности очень глубокое, замечание Горького. В рассказе "Кирилка" есть сцена, где человек безуспешно борется с полой, которую отворачивает ветер. "...А я, глядя на него, думал о том, как много человек тратит энергии на борьбу с мелочами. Если бы нас не одолевали гнусные черви мелких будничных зол, - мы легко раздавили бы страшных змей наших несчастий" [21].

256

Для стремления Эйнштейна максимально упростить и ограничить свои потребности существенное значение имело обостренное чувство социальной справедливости. В книге "Mein Weltbild" Эйнштейн писал:

"Вот о чем я думаю очень часто в продолжение каждого дня. Моя внешняя и внутренняя жизнь зависит от труда моих современников и наших предков. Я должен напрягать свои усилия, чтобы отдавать соответственно тому, что получаю и буду получать. И я ощущаю необходимость вести самую простую жизнь, и у меня часто бывает тягостное подозрение, что я требую от себе подобных больше необходимого..." [22]

Таким образом, более чем скромный костюм Эйнштейна каким-то логическим и эмоциональным ходом был связан с основными чертами его внутренней жизни. Это вообще характерно для Эйнштейна: каждая деталь быта, привычек, склонностей в последнем счете (обычно довольно простым и прозрачным образом) связана с основными идеалами мыслителя. Это и создает впечатление удивительного единства образа Эйнштейна.

Когда Леви-Чивита ушел, Эйнштейн и Инфельд отправились в дом, где жил Эйнштейн. По дороге он рассказывал Инфельду о своем отношении к квантовой механике. Она, говорил Эйнштейн, неудовлетворительна с эстетической точки зрения.

"Я зашел, - продолжает свои воспоминания Инфельд, - с ним в дом, в его кабинет с большим окном, выходящим в прекрасный сад, полный живых красок американской осени, и тут услышал от него первое и единственное за весь день замечание, не относящееся к физике:

- Прекрасный вид из этого окна" [23].

21 Горький М. Собр. соч., т. 3. М., 1930, с. 436.

22 Comment je vois le monde, 8.

23 Успехи физических паук, 1956, 59, вып. 1, с. 141.

Замечание это не относилось к физике, но было не так уж далеко от нее. Ощущение красоты природы переплеталось у Эйнштейна с ощущением красоты научной теории. За несколько минут до взгляда в окно на осенний пейзаж Эйнштейн говорил об эстетической неполноцен-

257

ности квантовой механики. У Эйнштейна критика квантовой механики была в большой мере интуитивной ("свидетель - мой мизинец", -писал он Борну). Известно также, как тесно связана у Эйнштейна научная интуиция с эстетическими критериями при выборе научной теории. Поэтому нам ясен смысл замечания о неудовлетворительности квантовой механики с эстетической точки зрения.

Совместная работа Эйнштейна с Инфельдом была посвящена проблеме уравнений движения. Она состоит в следующем. В классической физике существуют уравнения поля, по которым, зная источники поля, можно определить его напряженность в каждой точке, т.е. силу, с которой поле действует на единичный заряд, оказавшийся в этой точке. Например, зная расположение электрически заряженных тел, можно с помощью уравнений электромагнитного поля узнать, с какой силой будет притягиваться или отталкиваться заряд, оказавшийся в данной точке. Таким же образом классические уравнения гравитационного поля позволяют узнать, какова сила тяготения в каждой точке, если известно распределение тяжелых масс. Наряду с уравнениями поля в классической физике существуют уравнения движения. Здесь напряженность поля - заданная величина. Зная эту величину, можно с помощью уравнений движения найти положение тела в каждый последующий момент. Уравнения поля и уравнения движения в классической физике независимы. Напротив, в эйнштейновской теории тяготения уравнения поля и уравнения движения нельзя рассматривать как независимые. Уравнения движения можно вывести из уравнений поля. Но это очень сложная задача. В конце тридцатых годов Эйнштейну с помощью своих учеников удалось ее решить.

Получение уравнений движения из уравнений поля было трудной математической задачей. Но преодоление математических трудностей сопровождалось некоторой физической интуицией, интуитивным, чисто физическим представлением о значении указанной задачи для исходных идей физической картины мира.

В общей теории относительности поле тяготения или искривление пространства и времени рассматривается как результат существования в пространстве и во времени материальных тел - источников поля. Уравнения

258

поля показывают, как искривляется пространство-время или, что то же самое, какова напряженность поля тяготения при заданных источниках поля, при заданном распределении центров тяготения - материальных тел. В гравитационном поле движется частица. Если закон ее движения (уравнения движения) независим от уравнений поля, то речь идет о двух реальностях: 1) поле и 2) движущихся в поле и создающих поле телах. Если же уравнения движения не самостоятельны, а уже содержатся в заданных уравнениях поля, то перед нами нет другой реальности помимо поля. Если движения частиц определяются в последнем счете уравнениями поля и только ими, значит, мы можем рассматривать частицы как некие концентрированные средоточия поля.

Этот ход мысли не связан однозначно с решением задачи - получением уравнений движения из уравнений поля. Но у Эйнштейна такое выведение таило в себе, по-видимому, указанный подтекст. Он связан с линией развития физических идей Эйнштейна в "бесплодный" период.

Герман Вейль когда-то писал, что в классической науке пространство рассматривалось "как наемная квартира" - оно не зависело от того, что в нем происходит [24]. Неевклидова геометрия показала возможность различных свойств пространства, а общая теория относительности показала зависимость этих свойств от наличия в пространстве тел - центров тяготения. "Наемная квартира" превратилась в квартиру, которую жители непрерывно перестраивают. Чтобы иллюстрировать новый взгляд на пространство и тела, нужно отказаться от аналогии Вейля: трудно представить себе, что жители квартиры оказались чем-то вроде ее архитектурных деталей.

24 См. сб.: Об основаниях геометрии. М., 1956, с. 341.

В течение 1936-1937 гг. Инфельд почти ежедневно виделся с Эйнштейном у него и много гулял с ним по Принстону. Воспоминания Инфельда, относящиеся к этому периоду, вносят новые штрихи и краски в портрет Эйнштейна. Инфельду принадлежит одно совершенно неожиданное сравнение при попытке охарактеризовать колоссальную напряженность непрерывной деятельности Эйнштейна. Он говорит о вечно вращающемся интеллектуальном механизме, но, чтобы дать представление о невероятной жизненности этого процесса, он пользуется другим сравнением.

259

"В Америке, - пишет Инфельд, - я впервые в жизни увидел негритянские танцы, пронизанные огнем и жизненной силой. Танцевальный зал в "Савойе" в Гарлеме преображается в африканские джунгли с палящим солнцем и богатой густой растительностью. Воздух полон вибрации. Жизненную силу излучают громкая музыка и страстные танцы; зритель теряет ощущение реальности. В отличие от негров белые кажутся полуживыми, смешными и приниженными. Они создают фон, на котором еще сильнее поражает примитивная, безграничная живучесть негров. Кажется, что не нужно никакой передышки, что это интенсивное движение может продолжаться вечно.

Эта картина часто стояла у меня перед глазами, когда я наблюдал за Эйнштейном. Словно существовал какой-то предельно живучий механизм, вечно вращающийся в его мозгу. Это была сублимированная жизненная сила. Порой наблюдение было попросту мучительным. Эйнштейн мог говорить о политике, с удивительнейшей, присущей ему добротой выслушивать просьбы, отвечать на вопросы, но за этой внешней деятельностью чувствовалась постоянная работа мысли над научными проблемами; механизм его мозга действовал без перерыва, вечное движение этого механизма оборвала лишь смерть" [25].

Обращенная к мирозданию мысль Эйнштейна была потоком, который не могли остановить или повернуть не только сравнительно незначительные эпизоды, но и самые трагические личные и общественные события. И это вовсе не свидетельствовало о личной или общественной безучастности. Эйнштейн с большой остротой воспринимал все, что происходило с его близкими, общественные бедствия были для него глубокой трагедией, но работать он продолжал всегда с неизменной интенсивностью. Инфельд вспоминает, как Эйнштейн жил и работал в то время, когда болезнь его жены приближалась к трагическому концу [26]. Она лежала на нервом этаже, превращенном в домашнюю больницу. Эйнштейн работал на втором этаже. Он очень тяжело переживал надвигавшуюся раз-

260

луку с самым близким ему человеком, но работал, как всегда, очень интенсивно. Вскоре после смерти жены он пришел в Файн-холл пожелтевший, осунувшийся, резко постаревший. И сразу же начал обсуждать трудности в работе над уравнениями движения. По-видимому, напряженная абстрактная мысль была для Эйнштейна такой же постоянной, как дыхание.

25 Успехи физических наук, 1956, 59, вып. 1, с. 142.

26 Там же, с. 149.

В воспоминаниях Инфельда затронута очень важная проблема интеллектуальных истоков сердечности Эйнштейна. У нас уже был случай заметить, что моральный облик Эйнштейна находился в глубокой, хотя и не явной, гармонии с чертами интеллекта. Редко можно было найти ученого, у которого мысль в такой степени была бы пронизана чувством, имела бы такой отчетливый эмоциональный топ, в такой степени питалась бы эмоциональным ощущением "служения надличному" и эстетическим восхищением перед лицом природы. В свою очередь, редко можно было найти человека, у которого сердечное отношение к людям, любовь к людям, чувство ответственности перед людьми в такой степени вытекало бы из мысли.

Инфельд дает очень меткую характеристику этой черты Эйнштейна.

"Я многому научился у Эйнштейна в области физики. Но больше всего я ценю то, чему научился у него помимо физики. Эйнштейн был - я знаю, как банально это звучит, - самым лучшим человеком в мире. Впрочем, и это определение не так просто, как кажется, и требует некоторых пояснений.

Сочувствие - это вообще источник людской доброты. Сочувствие к другим, сочувствие к нужде, к человеческому несчастью - вот источники доброты, действующие через резонанс симпатии. Привязанность к жизни и к людям через наши связи с внешним миром будит отзвук в наших чувствах, когда мы смотрим на борьбу и страдания других.

Но существует и совершенно другой источник доброты. Он заключается в чувстве долга, опирающемся на одинокое, ясное мышление. Добрая, ясная мысль ведет человека к доброте, к лояльности, потому что эти качества делают жизнь более простой, полной, богатой, потому что таким путем мы сокращаем число бедствий в нашей среде, уменьшаем трения со средой, в которой

261

живем, и, увеличивая сумму человеческого счастья, укрепляем и свое внутреннее спокойствие. Надлежащая позиция в общественных делах, помощь, дружба, доброта могут вытекать из обоих названных источников, если мы выразимся анатомически, - из сердца или из головы. С годами я учился все сильнее ценить второй род доброты - тот, который вытекает из ясного мышления. Много раз приходилось мне видеть, как разрушительны чувства, не поддерживаемые ясным рассудком" [27].

Многие, знавшие Эйнштейна, спрашивали себя, что является более великим в этом человеке: интеллект, проникающий в структуру Вселенной, или сердце, резонирующее на каждое человеческое горе и на каждое проявление общественной несправедливости? Это впечатление проходит и через другие воспоминания о жизни Эйнштейна в Принстоне. Густав Букки, врач, лечивший Эйнштейна, пишет, что каким бы сильным ни было впечатление, производимое глубиной и неожиданностью мыслей Эйнштейна, "все же его человечность была наибольшим и самым трогательным чудом" [28]. Букки рассказывает, что Эйнштейн не соглашался на просьбы позировать художникам, но существовал аргумент, действовавший на него безошибочно. Достаточно было художнику сказать, что портрет Эйнштейна поможет ему хоть на время выйти из нужды, и Эйнштейн безропотно тратил долгие часы, позируя бедняку. Букки говорит, что на улицах у прохожих при взгляде на Эйнштейна всегда появлялась добрая улыбка. Он немного смущенно отвечал на эти улыбки. В Принстоне его знали все.

27 Успехи физических наук, 1956, 59, вып. 1.

28 Helle Zeit, 61.

"Даже в Принстоне, маленьком университетском городке, все смотрели на Эйнштейна жадными изумленными глазами. Во время наших прогулок мы избегали нескольких более оживленных улиц, выбирали поля и безлюдные улочки. Однажды, например, из какого-то автомобиля нас попросили задержаться. Из машины вышла немолодая уже женщина с фотоаппаратом, и, зарумянившись от волнения, попросила:

- Господин профессор, разрешите мне сфотографировать вас.

- Пожалуйста.

262

Он несколько секунд стоял спокойно, а потом продолжил свои рассуждения.

Я уверен, что через несколько минут он забыл об этом инциденте.

Как-то в Принстоне мы пошли в кино на картину "Жизнь Эмиля Золя". Купив билеты, мы вошли в переполненное фойе, где узнали, что придется ждать еще 15 минут. Эйнштейн предложил пройтись. Выходя, я сказал контролеру:

- Мы вернемся через несколько минут. Эйнштейн, однако, забеспокоился.

- У нас уже нет билетов, вы нас узнаете? Контролер, считая, что это удачная шутка, ответил

Эйнштейну:

- Да, профессор, я вас наверное узнаю. Когда я смотрел картину, я думал, что если не я сам, то мои дети увидят, вероятно, когда-нибудь фильм "Жизнь Альберта Эйнштейна" и он будет так же исторически правдив, как этот" [29].

В начале 1937 г. Инфельд после долгих колебаний решил поговорить с Эйнштейном по одному чисто личному вопросу. Он получил степендию в Принстоне на один год. Пора было подумать о дальнейшей возможности работы с Эйнштейном. Несмотря на энергичные просьбы последнего, Инфельду отказали в продлении стипендии. Тогда ему пришла в голову мысль написать вместе с Эйнштейном популярную книгу. Достаточно было сказать любому издателю о согласии Эйнштейна, чтобы половины полученного аванса хватило Инфельду еще на год жизни в Принстоне. С трудом преодолевая сковывающую неловкость, запинаясь и сбиваясь, Инфельд изложил Эйнштейну этот план. Эйнштейн спокойно слушал и ждал, пока Инфельд объяснит, наконец, чего он хочет. Наконец, он тихо произнес: "Эта мысль недурна. Совсем недурна!"

Потом он протянул Инфельду руки.

- Мы сделаем это" [30].

29 Успехи физических наук, 1956, 59, вып. 1, с. 155.

30 Там же, с. 162.

Эйнштейн не захотел писать популярную книгу о теории относительности. Его привлек, а потом и захватил другой план - показать логику основных физических идей, последовательно входивших в научную картину

263

мира. Именно физических, без математического аппарата. Историческое изложение физики неизбежно улавливает предварительные, чисто физические картины, которые сменяются формулами и расчетами при позднейшем строгом и систематическом изложении. В историческом аспекте явственно выступает романтика поисков и идейных столкновений.

"Это драма, драма идей, - говорил Эйнштейн о содержании будущей книги. - Наша книга должна быть интересной, захватывающей для каждого, кто любит науку" [31].

31 Успехи физических наук, 1956, 59, вып. 1.

Интерес Эйнштейна к предваряющим строгое изложение интуитивным и полуинтуитивным картинам, представление о том, что именно эти картины образуют "драму идей", - все это связано с исходными гносеологическими принципами. В наглядных картинах сохраняется в явном виде принципиальная возможность экспериментальной проверки теории, исключающая ее априорную природу. Если бы наука была результатом однозначного логического развития априорных посылок, присущих познанию, или условных посылок, она была бы чем угодно, но только не драмой. Если бы она была собранием феноменологических констатаций, "чистым описанием", результатом субъективного "опыта", в ней не было бы "бегства от очевидности", неожиданных парадоксов, столкновения идей, - всего того, что превращает науку в драму и что выявляется в истории науки.

Представлению о содержании книги соответствовали замыслы, относившиеся к характеру изложения. Эйнштейн и Инфельд хотели избежать внешних эффектов, всякого рода внешних, не связанных с предметом украшений. Они не хотели поражать воображение читателя сопоставлением гигантских масштабов Вселенной, межгалактических расстояний в миллиарды световых лет и т, п. с размерами атомов. Кроме того, по мнению Эйнштейна и Инфельда, задуманная книга не должна была создавать представления о принципиальном отличии науки от простого здравого смысла. Если наука - логическое развертывание условных априорных схем, она не может иметь что-либо общее с представлениями, вырастающими из повседневного опыта. Но из гносеологиче-

204

ских позиций Эйнштейна следует противоположный вывод: научная мысль идет по той же дороге, что и повседневный здравый смысл, но идет дальше, в те области, где встречаются новые закономерности, которые кажутся повседневному здравому смыслу (по крайней мере первоначально) парадоксальными.

В апреле 1938 г. "Эволюция физики" вышла в свет.

В предисловии к этой книге говорится:

"Когда мы писали книгу, мы вели длинные дискуссии о характере нашего идеализированного читателя и сильно беспокоились о нем. Мы восполняли полное отсутствие у него каких-либо конкретных сведений по физике и математике большим числом достоинств. Мы считали его заинтересованным в физических и философских идеях и были вынуждены восхищаться тем терпением, с каким он пробивался через менее интересные и более трудные страницы" [32].

32 Эйнштейн, 4, 359.

Следует сказать, что такой читатель не слишком идеализирован, он существует. "Эволюция физики" не требует специальных знаний, но она предъявляет очень высокие требования к интеллигентности, способности к абстрактному мышлению, последовательности. Прежде всего она требует глубокого интереса к идейной эволюции человечества. Очень важным знамением времени служит многочисленность реальных прообразов читателя, обладающего такими способностями и склонностями. Так много людей сейчас напряженно ищут в истории науки ответа на современные вопросы. Основной ответ - гармония и познаваемость мира - выражен в следующих строках: "Без веры в то, что возможно охватить реальность нашими теоретическими построениями, без веры во внутреннюю гармонию нашего мира не могло быть никакой науки. Эта вера есть и всегда останется основным мотивом всякого научного творчества. Во всех наших усилиях, во всякой драматической борьбе между старыми и новыми воззрениями мы узнаем вечное стремление к познанию, непоколебимую веру в гармонию нашего мира..."

Этим строкам предшествует краткая характеристика развития научной картины мира, из которой следует идея его гармонии и познаваемости.

265

Исходный пункт - понятия массы, силы и движения по инерции, не нарушающего хода событий в движущейся системе. При помощи этих понятий формируется механическая картина мира: между частицами действуют силы, зависящие только от расстояния. "Нужно было смелое научное воображение, чтобы понять, что не поведение тел, а поведение чего-то находящегося между ними, т.е. поля, может быть существенно для направления событий и для их понимания". Далее было отброшено абсолютное время, а затем было преодолено ограничение относительности движением инерциальных систем. Во всех системах события сводятся к относительным смещениям тел. События определяются не одномерным временем и трехмерным пространством, а четырехмерным пространственно-временным многообразием. Наконец, "квантовая теория раскрыла новые и существенные стороны нашей реальности. Прерывность стала на место непрерывности". На всех очерченных этапах физика ставила перед собой одну и ту же цель: найти в лабиринте наблюдаемых фактов объективную гармонию. Существование и постижимость такой гармонии - итог истории науки. "Мы желаем, чтобы наблюденные факты логически следовали из нашего понятия реальности" [33].

33 Там же, с. 542 543.

Этот итог стоял в центре научных, а следовательно, и всех жизненных интересов Эйнштейна. Рационализм, преемственно связанный с мировоззрением Спинозы, обогащенный трехвековым развитием науки и практики, приобретает наиболее общую форму: логика научной мысли в идеале приводит к совокупности эмпирически постигаемых физических соотношений.

Характерно отношение Эйнштейна к вышедшей книге. Подготовка "Эволюции физики" очень увлекла его, но как только рукопись была закончена, он потерял к ней всякий интерес, не взглянул ни на корректуру, ни на вышедшие экземпляры. Чтобы не обидеть издателей, Инфельд отвечал на их вопросы, что Эйнштейну понравилось оформление книги. В действительности он и не раскрывал книгу.

Трагедия атомной бомбы

Атом - это скупой богач, который при жизни вовсе не тратит денег (энергии). Но в завещании он оставляет свое состояние двум сыновьям М' и М" с условием, что они отдадут обществу небольшую часть - меньше одной тысячной - состояния (энергии или массы). Состояние, получаемое сыновьями, таким образом, несколько меньше, чем состояние, которым владел отец (сумма масс М'+М" несколько меньше, чем масса М делящегося атома). Но часть, отдаваемая обществу, относительно небольшая, все же настолько громадна (рассматриваемая как кинетическая энергия), что она несет с собой для общества угрозу несчастья. Отвратить эту угрозу - стало самой настоятельной проблемой нашего времени.

Эйнштейн

С самого начала цивилизации вплоть до середины нашего века энергетической основой производства были процессы перегруппировки атомов - химические реакции горения, освобождающие количества энергии, несопоставимо малые по сравнению с внутренней энергией тел. Начиная с первых атомных установок используются процессы, в которых выделяются количества энергии, сопоставимые с массами тел, умноженными на квадрат скорости света. Речь идет об установках мирного значения. Когда был сконструирован тепловой двигатель, в котором поршень уже с первым тактом навсегда покидал цилиндр, т.е. когда было изготовлено огнестрельное оружие, - новая эра в энергетике не началась. Она началась с первых тепловых двигателей, в которых расширение газа или пара приводило к вращению валов рабочих машин. Соответственно и атомная эра открылась не первой атомной бомбой, а первой атомной электростанцией.

Освобождение атомной энергии основано на закономерностях, открытых благодаря применению теории относительности в физике атомного ядра. В последней экспериментальные исследования показали, что масса ядра атома меньше суммы масс всех входящих в это ядро

267

частиц - протонов и нейтронов. Такая недостаточность массы ядра по сравнению с суммой масс ядерных частиц получила объяснение в атомной физике на основе найденного Эйнштейном соотношения массы и энергии. В различных ядрах частицы как бы упакованы с различной компактностью; для отрыва частицы от остальных требуется различная энергия. Энергия связи частиц в ядре меняется при переходе от одного элемента периодической системы к другому. Согласно соотношению Эйнштейна, различиям в энергии соответствуют различия в массе; масса ядра отступает в той или иной мере от точного значения суммы масс частиц, образующих ядро.

Превращения одних ядер в другие - деление тяжелых ядер или соединение легких ядер в более тяжелые - приводят к изменению "компактности" упаковки. При подобных реакциях масса получившихся ядер может быть меньше, чем масса исходных. Это уменьшение массы соответствует освобождению энергии: освободившаяся энергия равна уменьшению массы, помноженному на квадрат скорости света.

Расчеты, основанные на указанных выводах теории относительности, позволяют утверждать, что освобождение энергии происходит при ядерных реакциях в наиболее тяжелых ядрах, а также при реакциях, в которых участвуют самые легкие ядра.

Ядра наиболее тяжелых элементов (элементов с наибольшими атомными весами), стоящих в конце периодической системы Менделеева, обладают меньшей "компактностью", чем ядра средних элементов. Поэтому при переходе от тяжелых ядер к средним, иначе говоря, при делении тяжелых ядер, состоящих из большого числа протонов и нейтронов, на меньшие, энергия освобождается. Эти соотношения и описаны во взятых в качестве эпиграфа к этой главе строках Эйнштейна, посвященных скупому богачу, делящему свое состояние между сыновьями.

Напротив, у легких ядер, стоящих в самом начале системы Менделеева, выигрыш в "компактности" происходит при слиянии ядер в несколько большие. Когда ядра водорода соединяются в ядра гелия, освобождается большое количество энергии.

Таким образом, теория относительности, примененная в ядерной физике, позволила предвидеть два типа реакций: деление тяжелых ядер и соединение самых легких

268

ядер. Эти реакции выделяют энергию; ядра, получившиеся в результате таких реакций, обладают меньшей массой, чем исходные. Энергия, равная уменьшению массы, помноженному на квадрат скорости света, должна выделиться при таких реакциях в гигантских количествах. Из грамма вещества получится в сотни тысяч раз больше энергии, чем при сгорании вещества.

В конце тридцатых годов была открыта реакция деления ядер урана. Эти тяжелые ядра, когда их бомбардируют нейтронами, раскалываются каждое на две части - ядра средних элементов. При этом должна выделиться энергия, равная уменьшению массы, умноженному на квадрат скорости света.

Вскоре выяснилось, что при делении ядра урана возникают нейтроны, которые способны вызвать деление соседних ядер, - таким образом, процесс приобретает характер цепной реакции, и, раз начавшись, деление охватывает всю массу урана, в которой началось деление. К таким результатам пришел Фредерик Жолио-Кюри во Франции, а также Энрико Ферми, начавший работать над делением урана в Италии и вскоре бежавший из-под власти Муссолини и поселившийся в США. Здесь над проблемой урана работали Лео Сцилард и другие.

Заря атомной эры занималась, когда политический горизонт был омрачен тучами. Гитлеровская Германия быстро наращивала свой военный потенциал. Больше, чем когда-либо, Эйнштейн задумывался о том, в чьи руки попадут результаты физических исследований. Он предвидел близкое начало мировой войны. Инфельд рассказывает, что Эйнштейн хорошо понимал значение событий в Испании - нападения на республику - как репетиции тотальной фашистской агрессии. Он надеялся на успешное отражение нападения.

"Помню блеск его глаз, когда я сказал ему, что дневные выпуски газет сообщили о большой победе республиканцев. - Это звучит, как песня ангелов, - сказал он с подъемом, который мне редко приходилось у него наблюдать" [1].

1 Успехи физических наук, 1956, 59, вып. 1, с. 156.

Не прошло двух лет, и война началась. Летом 1939 г. Эйнштейн был поставлен перед вопросом, ни с чем не сопоставимым по важности и остроте.

269

В июле 1939 г. два физика, Вигнер и Сцилард, направились на берег моря в Лонг-Айленд, где Эйнштейн проводил летнее жаркое время года. Об этой поездке со слов Вигнера и Сциларда рассказывает Роберт Юнг в своей книге "Ярче тысячи солнц" [2].

Они долго безуспешно искали дачу, которую снимал Эйнштейн. В конце концов Сцилард воскликнул: "Давайте все бросим и отправимся домой! Может быть, здесь виден перст судьбы? Возможно, мы делаем большую ошибку, пытаясь использовать помощь Эйнштейна в обращении к властям с делом такого рода. Раз правительство получает выгоду от чего-то, оно никогда не допустит..."

"Но наш долг - предпринять такой шаг, - перебил Вигнер. - Мы должны сделать свой вклад в дело предупреждения страшного бедствия" [3].

2 Юнг Р. Ярче тысячи солнц. Повествование об ученых-атомниках. М., 1960, с. 78-81. Воспоминания Сциларда см.: Helle Zeit, 98- 104.

3 Юн" Р. Ярче тысячи солнц, с. 78.

"Страшное бедствие", которое хотели предотвратить ехавшие к Эйнштейну физики, состояло в изготовлении урановой бомбы в нацистской Германии. Сведения, просочившиеся оттуда, возбудили у Сциларда и некоторых других физиков мысль о возможности появления ядерного оружия у гитлеровской армии. Сцилард стучался во все двери, чтобы предупредить о такой опасности и посеять у правительства США тревогу. Но у Сциларда не было тогда связей, его имя не было известно руководящим кругам, в которых такие понятия, как "энергия связи ядер", "деления ядер" и т. п., не ассоциировались с практическими задачами. Сцилард решил обратиться с помощью Эйнштейна к бельгийской королеве-матери Елизавете. Бельгия располагала тогда запасами урана, и Сцилард надеялся помешать их использованию в Германии. У него были и менее определенные намерения через посредство Эйнштейна привлечь к проблеме урановой бомбы внимание правительственных учреждений США. По-видимому, Сцилард чувствовал колоссальную ответственность, связанную с такой инициативой, нервничал, видел в случайных и мелких препятствиях перст судьбы. В его памяти запечатлелись все детали фатальной поездки.

В конце концов семилетний мальчик на улице указал дачу, где жил Эйнштейн, - он хорошо знал его.

270

"Возможность цепной реакции в уране, - рассказывает Сцилард, - не приходила в голову Эйнштейну. Но почти сразу же, как я начал рассказывать ему о ней, он оценил возможные последствия и изъяснил готовность помочь нам. Но нам казалось все же целесообразным до обращения к бельгийскому правительству информировать о предполагаемом шаге Государственный департамент в Вашингтоне. Вигнeр предложил составить проект письма к бельгийскому правительству и послать копию его в Государственный департамент. На этом Вигнер и я покинули дачу Эйнштейна" [4].

Сцилард посоветовался с некоторыми своими знакомыми и, наконец, повидался с финансистом Александром Саксом, другом и неофициальным советником Рузвельта, часто бывавшим у президента. Сакс оценил значение информации о делении урана. Они решили, чтобы письмо Эйнштейна было адресовано Рузвельту, и заготовили проект письма.

Второго августа Сцилард, на этот раз с Эдвардом Теллером, вновь поехал к Эйнштейну. Впоследствии, когда все участники этого дела в какой-то мере почувствовали бремя ответственности, им хотелось восстановить все детали - выяснить, в частности, кто составил окончательный текст письма.

Сцилард рассказывает:

"Насколько я помню, Эйнштейн диктовал письмо Тел-леру по-немецки, а я использовал текст этого письма как основу еще для двух вариантов, одного сравнительно краткого и другого довольно длинного. Оба они были адресованы президенту. Я предоставил Эйнштейну выбрать тот, который он предпочитал. Он выбрал длинный вариант. Я подготовил также меморандум в качестве пояснения к письму Эйнштейна" [5].

4 Там же, с. 79.

5 Там же, с. 80.

Теллер, напротив, утверждал, что Эйнштейн только подписал привезенное письмо. Так же рассказывал об этом и Эйнштейн.

Приведем текст письма.

"Альберт Эйнштейн, Олд Гров-Род,

Нассау Пойнт Пеконик,

Лонг-Айленд, 2 августа 1939.

271

Ф. Д. Рузвельту

Президенту Соединенных Штатов

Белый дом. Вашингтон

Сэр!

Некоторые недавние работы Ферми и Сциларда, которые были сообщены мне в рукописи, заставляют меня ожидать, что элемент уран может быть в ближайшем будущем превращен в новый и важный источник энергии. Некоторые аспекты возникшей ситуации, по-видимому, требуют бдительности и в случае нужды быстрых действий со стороны правительства. Я считаю своим долгом обратить Ваше внимание на следующие факты и рекомендации.

В течение последних четырех месяцев благодаря работам Жолио во Франции, а также Ферми и Сциларда в Америке стала вероятной возможность ядерной реакции в крупной массе урана, вследствие чего может быть освобождена значительная энергия и получены большие количества радиоактивных элементов. Можно считать почти достоверным, что это будет достигнуто в ближайшем будущем.

Это новое явление способно привести также к созданию бомб, возможно, хотя и менее достоверно, исключительно мощных бомб нового типа. Одна бомба этого типа, доставленная на корабле и взорванная в порту, полностью разрушит весь порт с прилегающей территорией. Такие бомбы могут оказаться слишком тяжелыми для воздушной перевозки.

Соединенные Штаты обладают малым количеством урана. Ценные месторождения находятся в Канаде и Чехословакии. Серьезные источники - в Бельгийском Конго.

Ввиду этого положения не сочтете ли Вы желательным установление постоянного контакта между правительством и группой физиков, исследующих проблемы цепной реакции в Америке? Для такого контакта Вы могли бы уполномочить лицо, пользующееся Вашим доверием, неофициально выполнять следующие обязанности:

а) поддерживать связь с правительственными учреждениями, информировать их об исследованиях и давать им необходимые рекомендации, в особенности в части обеспечения Соединенных Штатов ураном; |

272

б) содействовать ускорению экспериментальных работ, ведущихся сейчас за счет внутренних средств университетских лабораторий, путем привлечения частных лиц и промышленных лабораторий, обладающих нужным оборудованием.

Мне известно, что Германия в настоящее время прекратила продажу урана из захваченных чехословацких рудников. Такие шаги, быть может, станут понятными, если учесть, что сын заместителя германского министра иностранных дел фон Вейцзекер прикомандирован к Институту кайзера Вильгельма в Берлине, где в настоящее время повторяются американские работы по урану.

Искренне Ваш

Альберт Эйнштейн" [6].

6 Helle Zeit, 96-97.

Вмешательство Эйнштейна было завершением длительной эволюции его отношения к оружающему. Вместе с тем этот акт связан с очень характерными особенностями начала атомной эры.

К какому типу мыслителей принадлежит Эйнштейн - к затворникам или же к активным участникам исторических событий? Куно Фишер когда-то сравнивал двух философов нового времени. Один из них - Спиноза, никогда не общавшийся с власть имущими, независимый от них, выбравший себе в качестве профессии гранение алмазов, чтобы никто и ничто не мешало уединенным размышлениям. Второй - Лейбниц, советник королей, автор бесчисленных политических и административных проектов, человек, эпистолярное наследство которого состоит из 15 000 писем. Между ними не только различие индивидуальных склонностей, но и различие требований, адресуемых мыслителю в разное время, и различие общих концепций, из которых в одном случае вытекает бегство от житейской сутолоки, а в другом - активное вмешательство в жизнь.

Эйнштейн по своим склонностям был близок к Спинозе. Он не раз говорил о профессии рабочего, ремесленника, смотрителя маяка как об идеальном общественном положении мыслителя. И он долго отказывался от вмешательства в жизнь окружающих, от общественных выступлений, от активного воздействия на события, происходившие в университете, городе, стране, мире... Его призванием, мечтой, служением была наука, чистая - в самом различном смысле этого слова - наука.

273

И тем не менее ни один из естествоиспытателей не вмешивался в мирские дела с такой энергией и с таким эффектом, как Эйнштейн. Это началось не в 1939 г., а почти на двадцать пять лет раньше, во время первой мировой войны; потом еще больше Эйнштейн занимался делами мира в годы нагрянувшей славы, во время путешествий, в борьбе с нацизмом, - в общем, всю жизнь в нарастающей степени. И вот теперь ему предстояло "перерезать ленту" перед таким, быть может, роковым вмешательством науки в дела людей, какого еще никогда не было.

Разумеется, никто - и меньше всех Эйнштейн - не мог думать, что последовавшие события зависели от действий Эйнштейна. Подпись Эйнштейна на письме, адресованном Рузвельту, не была ключом к ящику Пандоры. Но участие Эйнштейна, хотя бы и минимальное, в организации экспериментальных работ по делению урана и его последующая весьма активная борьба против военного применения атомной энергии - характерное знамение времени. Не только потому, что Эйнштейну принадлежит формула, связывающая энергию с массой. Теория относительности стала в свое время символом чего-то очень далекого от жизни, интересов и надежд людей. И вместе с тем она была объектом самого напряженного общего интереса. Теперь интуитивная уверенность в не только теоретической значительности концепции Эйнштейна начинала оправдываться. Человечество приблизилось к такому историческому рубежу, когда наука стала источником самых светлых надежд и самых мрачных опасений. Теперь отказываться от активного вмешательства было бы изменой науке: ее существо, ее объективность, рациональность и правдивость требуют, чтобы надежды людей оправдались, а опасения исчезли.

Перед Эйнштейном стоял призрак Гитлера, вооруженного атомной бомбой. С другой стороны, он не чувствовал доверия к правящим кругам США.

Это недоверие было настолько сильным, что уже в сентябре 1940 г. Эйнштейн говорил о своем письме Рузвельту как о "самом печальном воспоминании жизни" и оправдывал его опасениями, связанными с подготовкой атомной бомбы в Германии.

274

Письмо Эйнштейна было вручено Саксом Рузвельту не скоро - только 11 октября - и не произвело впечатления на президента. Как ни странно, на Рузвельта подействовал (на следующий день за завтраком) рассказ Сакса о том, как Наполеон прогнал Фултона с его проектом парохода и не мог использовать суда с новыми двигателями для вторжения в Англию. "Прояви тогда Наполеон больше воображения и сдержанности, история XIX столетия могла бы развиваться совершенно иначе", - добавил Сакс.

Выслушав эту фразу, Рузвельт написал записку слуге Белого дома, сервировавшему завтрак, и тот вскоре принес бутылку французского коньяка наполеоновских времен и налил его в рюмки. Рузвельт вызвал своего военного помощника генерала Уотсона, и машина подготовки к созданию атомной бомбы завертелась. Вертелась она не слишком быстро, и в марте следующего 1940 г. Эйнштейн послал президенту второе письмо, где снова говорилось о возросшем интересе нацистской Германии к урану. Но, несмотря на поддержку Рузвельта, в правительственных и деловых кругах задерживали развертывание работ. Судя по воспоминаниям Сциларда и других первых участников этих работ, в указанных кругах теоретическая мысль пользовалась очень небольшим кредитом. Делу помогал энтузиазм привлеченных к выполнению программы физиков и инженеров. Они разделяли с иниициаторами дела и веру в теоретические расчеты и страх перед нацистской бомбой.

Разгром нацистской Германии устранил этот страх. Но появилась новая опасность.

"В 1945 г., когда мы перестали беспокоиться о том, что немцы могут сделать с нами, мы начали беспокоиться о том, что правительство Соединенных Штатов может сделать с другими странами" [7], - писал впоследствии Сцилард.

7 Юнг Р. Ярче тысячи солнц, с. 157.

И вот он снова едет к Эйнштейну, чтобы с его помощью вручить Рузвельту свой меморандум - попытку предотвратить атомную бомбардировку городов Японии. Письмо было Эйнштейном послано, но не дошло до адресата. 12 апреля 1945 г., в день неожиданной смерти Рузвельта, оно лежало непрочитанным на его столе.

275

Трагедия Хиросимы и Нагасаки была тяжелым испытанием для Эйнштейна. Антонина Валлентен рассказывает о своей беседе с Эйнштейном, в которой была затронута эта тема.

""В действительности я выполнил роль почтового ящика, - говорил Эйнштейн. - Мне принесли готовое письмо, и я должен был его подписать". Мы говорили об этом в рабочем кабинете Эйнштейна в Принстоне. Сероватый свет проникал сквозь стекла большого окна и падал на изборожденное морщинами лицо и на глаза Эйнштейна, казалось, опаленные огнем его взгляда. Наступило молчание, тяжелое от немых вопросов. Его взгляд, как всегда, сверкающий, был обращен па меня. Я сказала: "И тем не менее вы нажали кнопку". Он быстро отвернулся и посмотрел в окно на пустынную долину и ярко-зеленую лужайку с группой заслоняющих горизонт старых деревьев. Потом, отвечая, казалось, не мне, а верхушке дерева, на которой остановился его взгляд, Эйнштейн произнес тихо и задумчиво, разделяя слова: "Да, я нажал на кнопку..."" [8]

8 Vallentin A. Le drame d'Albert Einstein, p. 215.

Фраза: "Да, я нажал на кнопку" - может быть понята таким образом, будто Эйнштейн считал свое письмо Рузвельту причиной катастрофы, обрушившейся в 1945 г. на Хиросиму и Нагасаки и нависшей над всей Землей. Такое впечатление осталось, по-видимому, у Антонины Валлентен и высказано в приведенном отрывке. Эллен Дюкас сказала однажды, что фраза: "Да, я нажал на кнопку" - не соответствует характерному для Эйнштейна представлению о значении его личности и его поступков для судеб человечества. Эйнштейну было органически чуждо представление о зависимости больших исторических событий от воли выдающихся людей - "творцов истории". Себя он во всяком случае не причислял к таким творцам - подобная мысль, как и вообще мысли о себе, о своей роли в науке и в истории, никогда не приходила и не могла прийти Эйнштейну в голову. Он в абсолютной степени владел искусством толстовской "зеленой палочки"; вернее, отрешенность от мыслей о себе была для него не искусством, а органическим свойством внутреннего мира.

276

К этому следует прибавить, что письмо Рузвельту для всех знакомых с историей работ по ядерной энергии не могло соответствовать выражению "я нажал на кнопку". Не этот эпизод был причиной глубокой трагедии, которую ощущал Эйнштейн в 1945 г. и в последующие годы. Трагедия атомной бомбы была лишь наиболее тяжелым выражением того, что мучило Эйнштейна издавна. С присущим ему чувством личной ответственности за все зло, которое существует в мире, он особенно глубоко переживал большую, многовековую трагедию иррационального и разрушительного использования достижений разума. Разум человечества ищет гармонию в природе и по своим внутренним тенденциям ведет общество к гармонии, к рациональной организации общественной жизни. Но в антагонистическом обществе плоды разума могут стать отравленными, и каждая научная идея, каждое открытие внутреннего ratio мира могут стать оружием иррациональных сил. Подобные мысли Эйнштейн высказывал не раз в течение многих лет. Теперь речь шла о применении одного из основных выводов теории относительности. Но Эйнштейн ощущал свою ответственность за характер указанного применения не потому, что он был создателем теории относительности, - Эйнштейн никогда не думал о себе как о ее создателе, и вообще строй его мыслей исключал подобные самооценки. Слияние с коллективным разумом человечества, чувство ответственности за науку в целом делали для Эйнштейна таким тяжелым новый акт длительной трагедии научного творчества. Эта тяжесть не подрывала уверенности в том, что человечество может устранить опасность атомной войны и использовать плоды науки для созидания. Сама по себе атомная энергия не угрожает человечеству - ему угрожает злоупотребление новыми силами природы. "Открытие ценных атомных реакций, - писал Эйнштейн, - так же мало грозит человечеству уничтожением, как изобретение спичек; нужно только сделать все для устранения возможности злоупотребления этим средством".

Эйнштейн говорил, что атомная энергия приводит к количественному возрастанию срочности и важности старой проблемы. "Освобождение атомной энергии не создает повой проблемы, но делает более настоятельным разрешение старой проблемы", - писал Эйнштейн в ноябре 1945 г. Проблема состоит в возможности агрессивного и

277

разрушительного применения научных открытий. Эйнштейн верил в грядущее радикальное разрешение этой старой проблемы, в перестройку общества на рациональных началах и в полное использование научных открытии в интересах людей.

Однако эта уверенность, в свою очередь, не устраняла трагедии, не позволяла Эйнштейну забыть о том, что произошло вчера в Хиросиме и может произойти завтра в другом городе. Она не освобождала Эйнштейна от ощущения моральной ответственности за пути использования науки. Всю свою жизнь Эйнштейн не мог примириться с общественными противоречиями, забыть о них хотя бы на минуту, опуститься до социального и этического равнодушия и житейских компромиссов.

В мае 1946 г. Эйнштейн говорил о трагедии атомной бомбы с Ильей Эренбургом. Приведем прежде всего отрывок из воспоминаний Эренбурга.

"Эйнштейну, когда я его увидел, было за шестьдесят лет; очень длинные седые волосы старили его, придавали ему что-то от музыканта прошлого века или от отшельника. Был он без пиджака, в свитере, и вечная ручка была засунута за высокий воротник, прямо под подбородком. Записную книжку он вынимал из брючного кармана. Черты лица были острыми, резко обрисованными, а глаза изумительно молодыми, то печальными, то внимательными, сосредоточенными, и вдруг они начинали смеяться задорно, скажу, не страшась слова, по-мальчишески. В первую минуту он показался мне глубоким стариком, но стоило ему заговорить, быстро спуститься в сад, стоило его глазам ве